Computer Intrusion Detection Using an Iterative Fuzzy Rule Learning Approach

M. S. Abadeh, J. Habibi
{"title":"Computer Intrusion Detection Using an Iterative Fuzzy Rule Learning Approach","authors":"M. S. Abadeh, J. Habibi","doi":"10.1109/FUZZY.2007.4295375","DOIUrl":null,"url":null,"abstract":"The process of monitoring the events occurring in a computer system or network and analyzing them for sign of intrusions is known as intrusion detection system (IDS). The objective of this paper is to extract fuzzy classification rules for intrusion detection in computer networks. The proposed method is based on the iterative rule learning approach (IRL) to fuzzy rule base system design. The fuzzy rule base is generated in an incremental fashion, in that the evolutionary algorithm optimizes one fuzzy classifier rule at a time. The performance of final fuzzy classification system has been investigated using intrusion detection problem as a high-dimensional classification problem. Results show that the presented algorithm produces fuzzy rules, which can be used to construct a reliable intrusion detection system.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The process of monitoring the events occurring in a computer system or network and analyzing them for sign of intrusions is known as intrusion detection system (IDS). The objective of this paper is to extract fuzzy classification rules for intrusion detection in computer networks. The proposed method is based on the iterative rule learning approach (IRL) to fuzzy rule base system design. The fuzzy rule base is generated in an incremental fashion, in that the evolutionary algorithm optimizes one fuzzy classifier rule at a time. The performance of final fuzzy classification system has been investigated using intrusion detection problem as a high-dimensional classification problem. Results show that the presented algorithm produces fuzzy rules, which can be used to construct a reliable intrusion detection system.
基于迭代模糊规则学习方法的计算机入侵检测
监视计算机系统或网络中发生的事件并分析其入侵迹象的过程被称为入侵检测系统(IDS)。本文的目的是提取用于计算机网络入侵检测的模糊分类规则。提出了一种基于迭代规则学习的模糊规则库系统设计方法。模糊规则库是以增量方式生成的,因为进化算法每次优化一个模糊分类器规则。将入侵检测问题作为高维分类问题,研究了最终模糊分类系统的性能。结果表明,该算法生成的模糊规则可用于构建可靠的入侵检测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信