Decoding three-dimensional arm movements for brain-machine interface

H. Yeom, J. Kim, C. Chung
{"title":"Decoding three-dimensional arm movements for brain-machine interface","authors":"H. Yeom, J. Kim, C. Chung","doi":"10.1109/IWW-BCI.2013.6506624","DOIUrl":null,"url":null,"abstract":"Although estimation of 3-dimensional arm movements is crucial to control prosthetic devices using brain signals, there have been few non-invasive brain-machine interface (BMI) studies estimating arm movements. Here, we aimed to estimate 3-dimensional movements using magnetoencephalography (MEG) signals. For the movement decoding, we determined 68 MEG channels on motor-related area and 4 sub-frequency bands, 0.5–8, 9–22, 25–40 and 57–97Hz, based on event-related desynchronization (ERD) and synchronization (ERS). Our results demonstrate that non-invasive signals can estimate 3-dimensional movements with considerably high performance (mean r > 0.6). We also verified that low-frequency activity plays an important role in estimating a 3-dimensional movement trajectory. These results imply that disabled people will be able to control prosthetic devices without surgery in the near future.","PeriodicalId":129758,"journal":{"name":"2013 International Winter Workshop on Brain-Computer Interface (BCI)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Winter Workshop on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2013.6506624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Although estimation of 3-dimensional arm movements is crucial to control prosthetic devices using brain signals, there have been few non-invasive brain-machine interface (BMI) studies estimating arm movements. Here, we aimed to estimate 3-dimensional movements using magnetoencephalography (MEG) signals. For the movement decoding, we determined 68 MEG channels on motor-related area and 4 sub-frequency bands, 0.5–8, 9–22, 25–40 and 57–97Hz, based on event-related desynchronization (ERD) and synchronization (ERS). Our results demonstrate that non-invasive signals can estimate 3-dimensional movements with considerably high performance (mean r > 0.6). We also verified that low-frequency activity plays an important role in estimating a 3-dimensional movement trajectory. These results imply that disabled people will be able to control prosthetic devices without surgery in the near future.
解码三维手臂运动的脑机接口
虽然估计三维手臂运动对于使用脑信号控制假肢装置至关重要,但很少有非侵入性脑机接口(BMI)研究估计手臂运动。在这里,我们的目的是利用脑磁图(MEG)信号来估计三维运动。对于运动解码,我们基于事件相关去同步(ERD)和同步(ERS),在运动相关区域确定了68 MEG通道和0.5-8、9-22、25-40和57-97Hz 4个子频段。我们的研究结果表明,非侵入性信号可以以相当高的性能估计三维运动(平均r > 0.6)。我们还验证了低频活动在估计三维运动轨迹中起着重要作用。这些结果意味着,在不久的将来,残疾人将能够不通过手术控制假肢装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信