Towards constructing optimal feedforward neural networks with learning and generalization capabilities

Jen-Lun Yuan, H. Chiang, Chia-Jen Lin, Tai-Hsiung Li, Yung-Tien Chen, Chiew-Yann Chiou
{"title":"Towards constructing optimal feedforward neural networks with learning and generalization capabilities","authors":"Jen-Lun Yuan, H. Chiang, Chia-Jen Lin, Tai-Hsiung Li, Yung-Tien Chen, Chiew-Yann Chiou","doi":"10.1109/ANN.1991.213473","DOIUrl":null,"url":null,"abstract":"The authors consider the problem of finding minimal neural networks (in terms of number of neurons and synapses) subject to desired learning and generalization capabilities. An algorithm which automatically determines the number of neurons and the location of synaptic connections is proposed. A new neural network model is introduced to facilitate solving the optimal architecture problem. The synaptic connections are pruned based on testing hypotheses that the corresponding weights be smaller than cutting thresholds. Simulation results are demonstrated for designing neural networks for: (1) a 7-segment electronic display; and (2) a power system load modeling problem. Optimal architecture (in the sense of achieving the lower bound on the number of neurons) are obtained for (1), and a 50%-60% save-up of synapses with the desired learning/generalization capabilities is obtained for (2).<<ETX>>","PeriodicalId":119713,"journal":{"name":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1991.213473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The authors consider the problem of finding minimal neural networks (in terms of number of neurons and synapses) subject to desired learning and generalization capabilities. An algorithm which automatically determines the number of neurons and the location of synaptic connections is proposed. A new neural network model is introduced to facilitate solving the optimal architecture problem. The synaptic connections are pruned based on testing hypotheses that the corresponding weights be smaller than cutting thresholds. Simulation results are demonstrated for designing neural networks for: (1) a 7-segment electronic display; and (2) a power system load modeling problem. Optimal architecture (in the sense of achieving the lower bound on the number of neurons) are obtained for (1), and a 50%-60% save-up of synapses with the desired learning/generalization capabilities is obtained for (2).<>
构建具有学习和泛化能力的最优前馈神经网络
作者考虑的问题是找到最小的神经网络(就神经元和突触的数量而言),以满足所需的学习和泛化能力。提出了一种自动确定神经元数量和突触连接位置的算法。引入了一种新的神经网络模型来解决最优结构问题。突触连接的修剪是基于相应权重小于切割阈值的测试假设。仿真结果证明了神经网络的设计:(1)7段电子显示器;(2)电力系统负荷建模问题。(1)获得了最优架构(在实现神经元数量的下界的意义上),(2)获得了具有所需学习/泛化能力的突触的50%-60%的节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信