{"title":"Sufficient condition for local invertibility of spatio-temporal 4D B-spline deformations","authors":"S. Chun, C. Schretter, J. Fessler","doi":"10.1109/ISBI.2010.5490215","DOIUrl":null,"url":null,"abstract":"Recent advances in medical imaging technologies have made 4D image sequences available in clinical routine. As a consequence, image registration techniques are evolving from alignment of pairs of static volumetric images to spatio-temporal registration of dynamic (4D) images. Since the elastic image registration problem is ill-posed, additional prior information or constraints are usually required to regularize the problem. This work proposes to enforce local invertibility (diffeomorphism) of 4D deformations. A novel sufficient condition for local invertibility over continuous space and time is proposed and a practical regularization prior is designed from the theory. The method has been applied to an image registration (motion tracking) of a dynamic 4D CT image sequence. Results show that using proposed regularizer leads to deformations that are more plausible for respiratory motion than the standard approach without additional temporal regularization.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Recent advances in medical imaging technologies have made 4D image sequences available in clinical routine. As a consequence, image registration techniques are evolving from alignment of pairs of static volumetric images to spatio-temporal registration of dynamic (4D) images. Since the elastic image registration problem is ill-posed, additional prior information or constraints are usually required to regularize the problem. This work proposes to enforce local invertibility (diffeomorphism) of 4D deformations. A novel sufficient condition for local invertibility over continuous space and time is proposed and a practical regularization prior is designed from the theory. The method has been applied to an image registration (motion tracking) of a dynamic 4D CT image sequence. Results show that using proposed regularizer leads to deformations that are more plausible for respiratory motion than the standard approach without additional temporal regularization.