Models, Idealizations and Objective Chance

J. Sprenger, S. Hartmann
{"title":"Models, Idealizations and Objective Chance","authors":"J. Sprenger, S. Hartmann","doi":"10.1093/oso/9780199672110.003.0012","DOIUrl":null,"url":null,"abstract":"How does Bayesian inference handle the highly idealized nature of many (statistical) models in science? The standard interpretation of probability as degree of belief in the truth of a model does not seem to apply in such cases since all candidate models are most probably wrong. Similarly, it is not clear how chance-credence coordination works for the probabilities generated by a statistical model. We solve these problems by developing a suppositional account of degree of belief where probabilities in scientific modeling are decoupled from our actual (unconditional) degrees of belief. This explains the normative pull of chance-credence coordination in Bayesian inference, uncovers the essentially counterfactual nature of reasoning with Bayesian models, and squares well with our intuitive judgment that statistical models provide “objective” probabilities.","PeriodicalId":140328,"journal":{"name":"Bayesian Philosophy of Science","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Philosophy of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780199672110.003.0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

How does Bayesian inference handle the highly idealized nature of many (statistical) models in science? The standard interpretation of probability as degree of belief in the truth of a model does not seem to apply in such cases since all candidate models are most probably wrong. Similarly, it is not clear how chance-credence coordination works for the probabilities generated by a statistical model. We solve these problems by developing a suppositional account of degree of belief where probabilities in scientific modeling are decoupled from our actual (unconditional) degrees of belief. This explains the normative pull of chance-credence coordination in Bayesian inference, uncovers the essentially counterfactual nature of reasoning with Bayesian models, and squares well with our intuitive judgment that statistical models provide “objective” probabilities.
模型、理想化和客观机遇
贝叶斯推理如何处理科学中许多(统计)模型的高度理想化本质?对概率的标准解释,即对模型真实性的相信程度,似乎不适用于这种情况,因为所有候选模型都很可能是错误的。同样,对于统计模型生成的概率,机会-可信度协调如何起作用也不清楚。我们通过发展一种假设的可信度来解决这些问题,其中科学建模中的概率与我们实际的(无条件的)可信度解耦。这解释了贝叶斯推理中机会-可信度协调的规范性拉力,揭示了贝叶斯模型推理的本质反事实性质,并与我们的直觉判断很好地吻合,即统计模型提供了“客观”概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信