{"title":"Experiments on Hypothesis \"Fuzzy K-Means is Better than K-Means for Clustering\"","authors":"Srinivas Sivarathri, A. Govardhan","doi":"10.5121/IJDKP.2014.4502","DOIUrl":null,"url":null,"abstract":"Clustering is one of the data mining techniques that have been around to discover business intelligence by grouping objects into clusters using a similarity measure. Clustering is an unsupervised learning process that has many utilities in real time applications in the fields of marketing, biology, libraries, insurance, city-planning, earthquake studies and document clustering. Latent trends and relationships among data objects can be unearthed using clustering algorithms. Many clustering algorithms came into existence. However, the quality of clusters has to be given paramount importance. The quality objective is to achieve highest similarity between objects of same cluster and lowest similarity between objects of different clusters. In this context, we studied two widely used clustering algorithms such as the K-Means and Fuzzy K-Means. K-Means is an exclusive clustering algorithm while the Fuzzy K-Means is an overlapping clustering algorithm. In this paper we prove the hypothesis “Fuzzy K-Means is better than K-Means for Clustering” through both literature and empirical study. We built a prototype application to demonstrate the differences between the two clustering algorithms. The experiments are made on diabetes dataset obtained from the UCI repository. The empirical results reveal that the performance of Fuzzy K-Means is better than that of K-means in terms of quality or accuracy of clusters. Thus, our empirical study proved the hypothesis “Fuzzy K-Means is better than K-Means for Clustering”.","PeriodicalId":131153,"journal":{"name":"International Journal of Data Mining & Knowledge Management Process","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining & Knowledge Management Process","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJDKP.2014.4502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Clustering is one of the data mining techniques that have been around to discover business intelligence by grouping objects into clusters using a similarity measure. Clustering is an unsupervised learning process that has many utilities in real time applications in the fields of marketing, biology, libraries, insurance, city-planning, earthquake studies and document clustering. Latent trends and relationships among data objects can be unearthed using clustering algorithms. Many clustering algorithms came into existence. However, the quality of clusters has to be given paramount importance. The quality objective is to achieve highest similarity between objects of same cluster and lowest similarity between objects of different clusters. In this context, we studied two widely used clustering algorithms such as the K-Means and Fuzzy K-Means. K-Means is an exclusive clustering algorithm while the Fuzzy K-Means is an overlapping clustering algorithm. In this paper we prove the hypothesis “Fuzzy K-Means is better than K-Means for Clustering” through both literature and empirical study. We built a prototype application to demonstrate the differences between the two clustering algorithms. The experiments are made on diabetes dataset obtained from the UCI repository. The empirical results reveal that the performance of Fuzzy K-Means is better than that of K-means in terms of quality or accuracy of clusters. Thus, our empirical study proved the hypothesis “Fuzzy K-Means is better than K-Means for Clustering”.