{"title":"A design study of personal bibliographic data visualization","authors":"Tsai-Ling Fung, Jia-Kai Chou, K. Ma","doi":"10.1109/PACIFICVIS.2016.7465279","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative study on personal visualizations of bibliographic data. We consider three designs for egocentric visualization: node-link diagrams, adjacency matrices, and botanical trees to depict one's academic career in terms of his/her publication records. Case studies are conducted to compare the effectiveness of resulting visualizations for conveying particular aspect of a researcher's bibliographic records. Based on our study, we find that node-link diagrams are better at revealing the overall distribution of certain attributes; adjacency matrices can convey more information with less clutter; and botanical trees are visually attractive and provide the best at a glance characterization of the mapped data, but mapping data to tree features must be carefully done to derive expressive visualization.","PeriodicalId":129600,"journal":{"name":"2016 IEEE Pacific Visualization Symposium (PacificVis)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2016.7465279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
This paper presents a comparative study on personal visualizations of bibliographic data. We consider three designs for egocentric visualization: node-link diagrams, adjacency matrices, and botanical trees to depict one's academic career in terms of his/her publication records. Case studies are conducted to compare the effectiveness of resulting visualizations for conveying particular aspect of a researcher's bibliographic records. Based on our study, we find that node-link diagrams are better at revealing the overall distribution of certain attributes; adjacency matrices can convey more information with less clutter; and botanical trees are visually attractive and provide the best at a glance characterization of the mapped data, but mapping data to tree features must be carefully done to derive expressive visualization.