{"title":"Nanovoltmeter amplifier for low level voltage measurements","authors":"G. Cannatà, G. Scandurra, C. Ciofi","doi":"10.1109/I2MTC.2012.6229660","DOIUrl":null,"url":null,"abstract":"A new design of an offset correction system that employs a time varying resistance as a probe for detecting the sign and magnitude of the equivalent input offset of an operational amplifier in a series-shunt feedback configuration is proposed. The time varying sense resistor is implemented by a MOS for which the problem of charge injection is considerably reduced by resorting to a proper discrete time sampling strategy for offset error detection. Significant design results include the extension of the useful amplifier bandwidth from a few Hz up to about one hundred Hz with a gain boost from 201 to 1001. With the new approach, a residual offset in the order of a few tens of nV is obtained which allows us to classify the system as a nanovolt amplifier.","PeriodicalId":387839,"journal":{"name":"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2012.6229660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A new design of an offset correction system that employs a time varying resistance as a probe for detecting the sign and magnitude of the equivalent input offset of an operational amplifier in a series-shunt feedback configuration is proposed. The time varying sense resistor is implemented by a MOS for which the problem of charge injection is considerably reduced by resorting to a proper discrete time sampling strategy for offset error detection. Significant design results include the extension of the useful amplifier bandwidth from a few Hz up to about one hundred Hz with a gain boost from 201 to 1001. With the new approach, a residual offset in the order of a few tens of nV is obtained which allows us to classify the system as a nanovolt amplifier.