A new two-step fuzzy inference approach based on Takagi-Sugeno inference using discrete type 2 fuzzy sets

O. Uncu, I. Turksen
{"title":"A new two-step fuzzy inference approach based on Takagi-Sugeno inference using discrete type 2 fuzzy sets","authors":"O. Uncu, I. Turksen","doi":"10.1109/NAFIPS.2003.1226751","DOIUrl":null,"url":null,"abstract":"Fuzzy system modeling (FSM) is one of the most prominent tools in order to capture the hidden behavior of highly nonlinear systems with uncertainty. In this paper, a new type 2 FSM approach is proposed in order to increase the predictive power of traditional Takagi-Sugeno fuzzy system models. One of the biggest problems of type 2 fuzzy system models is computational complexity. In order to remedy this problem, the proposed inference mechanism performs type reduction as a first step. Then, the type 1 inference mechanisms are utilized to deduce a model output for a given crisp observation.","PeriodicalId":153530,"journal":{"name":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2003.1226751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Fuzzy system modeling (FSM) is one of the most prominent tools in order to capture the hidden behavior of highly nonlinear systems with uncertainty. In this paper, a new type 2 FSM approach is proposed in order to increase the predictive power of traditional Takagi-Sugeno fuzzy system models. One of the biggest problems of type 2 fuzzy system models is computational complexity. In order to remedy this problem, the proposed inference mechanism performs type reduction as a first step. Then, the type 1 inference mechanisms are utilized to deduce a model output for a given crisp observation.
基于离散2型模糊集的Takagi-Sugeno推理的两步模糊推理新方法
模糊系统建模(FSM)是研究具有不确定性的高度非线性系统隐藏行为的重要工具之一。为了提高传统Takagi-Sugeno模糊系统模型的预测能力,本文提出了一种新的2型FSM方法。二类模糊系统模型最大的问题之一是计算复杂度。为了解决这个问题,建议的推理机制首先执行类型约简。然后,利用类型1推理机制为给定的清晰观测推断模型输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信