Robust time-varying Kalman predictor for uncertain singular system with missing measurement

Jiayi Zheng, C. Ran
{"title":"Robust time-varying Kalman predictor for uncertain singular system with missing measurement","authors":"Jiayi Zheng, C. Ran","doi":"10.1109/CCDC52312.2021.9602514","DOIUrl":null,"url":null,"abstract":"For the linear stochastic singular system with missing measurement and uncertain noise variances, the robust Kalman prediction problem is addressed. Applying the singular value decomposition (SVD) method and the fictitious noise approach, the original singular system is transformed to new reduced-order standard system only with uncertain-variance fictitious noises. Applying the minimax robust estimation principle, the minmax robust time-varying Kalman predictor is presented in the sense that its actual prediction error variance is guaranteed to have the corresponding minimal upper bound for all admissible uncertainties. Its robustness is proved by the Lyapunov equation approach. A simulation example about circuits system verifies the correctness and effectiveness of the proposed results.","PeriodicalId":143976,"journal":{"name":"2021 33rd Chinese Control and Decision Conference (CCDC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 33rd Chinese Control and Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC52312.2021.9602514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For the linear stochastic singular system with missing measurement and uncertain noise variances, the robust Kalman prediction problem is addressed. Applying the singular value decomposition (SVD) method and the fictitious noise approach, the original singular system is transformed to new reduced-order standard system only with uncertain-variance fictitious noises. Applying the minimax robust estimation principle, the minmax robust time-varying Kalman predictor is presented in the sense that its actual prediction error variance is guaranteed to have the corresponding minimal upper bound for all admissible uncertainties. Its robustness is proved by the Lyapunov equation approach. A simulation example about circuits system verifies the correctness and effectiveness of the proposed results.
不确定缺失测量奇异系统的鲁棒时变卡尔曼预测器
针对测量缺失和噪声方差不确定的线性随机奇异系统,研究了鲁棒卡尔曼预测问题。采用奇异值分解(SVD)方法和虚拟噪声方法,将原有的奇异系统转化为仅含不确定方差虚拟噪声的降阶标准系统。应用极小极大鲁棒估计原理,提出了极小极大鲁棒时变卡尔曼预测器,保证其实际预测误差方差对所有允许的不确定性具有相应的最小上界。通过Lyapunov方程方法证明了该方法的鲁棒性。一个电路系统的仿真实例验证了所提结果的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信