On the quality estimation of optimal multiple criteria data association solutions

J. Dezert, K. Benameur, L. Ratton, J. Grandin
{"title":"On the quality estimation of optimal multiple criteria data association solutions","authors":"J. Dezert, K. Benameur, L. Ratton, J. Grandin","doi":"10.5281/ZENODO.23202","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method to estimate the quality (trustfulness) of the solutions of the classical optimal data association (DA) problem associated with a given source of information (also called a criterion). We also present a method to solve the multi-criteria DA problem and to estimate the quality of its solution. Our approach is new and mixes classical algorithms (typically Murty's approach coupled with Auction) for the search of the best and the second best DA solutions, and belief functions (BF) with PCR6 (Proportional Conflict Redistribution rule # 6) combination rule drawn from DSmT (Dezert-Smarandache Theory) to establish the quality matrix of the global optimal DA solution. In order to take into account the importances of criteria in the fusion process, we use weighting factors which can be derived by different manners (ad-hoc choice, quality of each local DA solution, or inspired by Saaty's Analytic Hierarchy Process (AHP)). A simple complete example is provided to show how our method works and for helping the reader to verify by him or herself the validity of our results.","PeriodicalId":297288,"journal":{"name":"2015 18th International Conference on Information Fusion (Fusion)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 18th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.23202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we present a method to estimate the quality (trustfulness) of the solutions of the classical optimal data association (DA) problem associated with a given source of information (also called a criterion). We also present a method to solve the multi-criteria DA problem and to estimate the quality of its solution. Our approach is new and mixes classical algorithms (typically Murty's approach coupled with Auction) for the search of the best and the second best DA solutions, and belief functions (BF) with PCR6 (Proportional Conflict Redistribution rule # 6) combination rule drawn from DSmT (Dezert-Smarandache Theory) to establish the quality matrix of the global optimal DA solution. In order to take into account the importances of criteria in the fusion process, we use weighting factors which can be derived by different manners (ad-hoc choice, quality of each local DA solution, or inspired by Saaty's Analytic Hierarchy Process (AHP)). A simple complete example is provided to show how our method works and for helping the reader to verify by him or herself the validity of our results.
多准则数据关联最优解的质量估计
在本文中,我们提出了一种估计与给定信息源(也称为准则)相关的经典最优数据关联(DA)问题解的质量(可信度)的方法。我们还提出了一种求解多准则数据分析问题的方法,并对其解的质量进行了估计。我们的方法是新的,它混合了经典算法(通常是Murty的方法与Auction相结合)来搜索最佳和次优数据挖掘解决方案,并使用从DSmT (Dezert-Smarandache理论)中提取的PCR6(比例冲突再分配规则# 6)组合规则的信念函数(BF)来建立全局最优数据挖掘解决方案的质量矩阵。为了考虑融合过程中标准的重要性,我们使用了可以通过不同方式(ad-hoc选择,每个局部数据处理方案的质量,或受Saaty的层次分析法(AHP)的启发)派生的加权因子。提供了一个简单完整的例子来展示我们的方法是如何工作的,并帮助读者自己验证我们结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信