Pointwise coproximinality in \(L^p(\mu, X)\)

Eyad Abu-Sirhan
{"title":"Pointwise coproximinality in \\(L^p(\\mu, X)\\)","authors":"Eyad Abu-Sirhan","doi":"10.33993/jnaat521-1328","DOIUrl":null,"url":null,"abstract":"Let \\(X\\) be a Banach space, \\(G\\) be a closed subspace of \\(X\\), \\((\\Omega,\\Sigma,\\mu)\\) be a \\(\\sigma\\)-finite measure space, \\(L(\\mu,X)\\) be the space of all strongly measurable functions from \\(\\Omega\\) to \\(X\\), and \\(L^{p}(\\mu,X)\\) be the space of all Bochner \\(p-\\)integrable functions from \\(\\Omega\\) to \\(X\\). Discussing the relationship between the pointwise coproximinality of \\(L(\\mu, G)\\) in \\(L(\\mu, X)\\) and the pointwise coproximinality of \\(L^{p}(\\mu, G)\\) in \\(L^{p}(\\mu, X)\\) is the purpose of this paper.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat521-1328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(X\) be a Banach space, \(G\) be a closed subspace of \(X\), \((\Omega,\Sigma,\mu)\) be a \(\sigma\)-finite measure space, \(L(\mu,X)\) be the space of all strongly measurable functions from \(\Omega\) to \(X\), and \(L^{p}(\mu,X)\) be the space of all Bochner \(p-\)integrable functions from \(\Omega\) to \(X\). Discussing the relationship between the pointwise coproximinality of \(L(\mu, G)\) in \(L(\mu, X)\) and the pointwise coproximinality of \(L^{p}(\mu, G)\) in \(L^{p}(\mu, X)\) is the purpose of this paper.
点邻近 \(L^p(\mu, X)\)
设\(X\)为Banach空间,\(G\)为\(X\)的闭子空间,\((\Omega,\Sigma,\mu)\)为\(\sigma\)有限测度空间,\(L(\mu,X)\)为\(\Omega\)至\(X\)的所有强可测函数的空间,\(L^{p}(\mu,X)\)为\(\Omega\)至\(X\)的所有Bochner \(p-\)可积分函数的空间。本文的目的是讨论\(L(\mu, X)\)中\(L(\mu, G)\)与\(L^{p}(\mu, X)\)中\(L^{p}(\mu, G)\)的点近邻关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信