Analysis of DNA microarray data using self-organizing map and kernel based clustering

M. Kotani, A. Sugiyama, S. Ozawa
{"title":"Analysis of DNA microarray data using self-organizing map and kernel based clustering","authors":"M. Kotani, A. Sugiyama, S. Ozawa","doi":"10.1109/ICONIP.2002.1198159","DOIUrl":null,"url":null,"abstract":"We describe a method of combining a self-organizing map (SOM) and a kernel based clustering for analyzing and categorizing the gene expression data obtained from DNA microarray. The SOM is an unsupervised neural network learning algorithm and forms a mapping a high-dimensional data to a two-dimensional space. However, it is difficult to find clustering boundaries from results of the SOM. On the other hand, the kernel based clustering can partition the data nonlinearly. In order to understand the results of SOM easily, we apply the kernel based clustering to finding the clustering boundaries and show that the proposed method is effective for categorizing the gene expression data.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We describe a method of combining a self-organizing map (SOM) and a kernel based clustering for analyzing and categorizing the gene expression data obtained from DNA microarray. The SOM is an unsupervised neural network learning algorithm and forms a mapping a high-dimensional data to a two-dimensional space. However, it is difficult to find clustering boundaries from results of the SOM. On the other hand, the kernel based clustering can partition the data nonlinearly. In order to understand the results of SOM easily, we apply the kernel based clustering to finding the clustering boundaries and show that the proposed method is effective for categorizing the gene expression data.
基于自组织图谱和核聚类的DNA微阵列数据分析
我们描述了一种将自组织图谱(SOM)和基于核的聚类相结合的方法,用于分析和分类从DNA微阵列获得的基因表达数据。SOM是一种无监督神经网络学习算法,它将高维数据映射到二维空间。然而,从SOM的结果中很难找到聚类边界。另一方面,基于核的聚类可以对数据进行非线性划分。为了便于理解SOM的结果,我们将基于核的聚类方法应用于聚类边界的寻找,并证明了该方法对基因表达数据的分类是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信