Indeks Harmonik dan Indeks Gutman Graf Nilradikal pada Gelanggang Komutatif dengan Satuan

Luluk Afifah, Imam Sujarwo, Muhammad Khudzaifah
{"title":"Indeks Harmonik dan Indeks Gutman Graf Nilradikal pada Gelanggang Komutatif dengan Satuan","authors":"Luluk Afifah, Imam Sujarwo, Muhammad Khudzaifah","doi":"10.18860/jrmm.v2i4.14902","DOIUrl":null,"url":null,"abstract":"Graph theory is a topic that is still an important subject to discuss. This is because until now graph theory has many practical applications in various disciplines, for example in biology, computer science, economics, informatics engineering, linguistics, mathematics, health, and social sciences. This study discusses the Gutman index of nilradical graphs in the commutative ring with unity.A nilradical graph whose vertices are non-zero nilpotent elements, when the domain is a commutative ring with units, it forms a complete graph only if the commutative ring with units we use is limited to a positive integer modulo n (Z_n). Where n is the square of the prime number p which is less than equal to 3. It is known that the general pattern of harmonic indices and Gutman indices of nilradical graphs in the commutative ring with unity are H(N(Z_(n=p^2 ) ))=((p-2)^2+(p -2))/2(p-2) and Gut(N(Z_(n=p^2 ) ))=(1/2 ((p-2)^2+(p-2))) (p- 2)^2 respectively. In its application, this general form can be used as a numerical parameter of a graph in chemical graph theory, molecular topology, and mathematical chemistry.","PeriodicalId":270235,"journal":{"name":"Jurnal Riset Mahasiswa Matematika","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Riset Mahasiswa Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18860/jrmm.v2i4.14902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graph theory is a topic that is still an important subject to discuss. This is because until now graph theory has many practical applications in various disciplines, for example in biology, computer science, economics, informatics engineering, linguistics, mathematics, health, and social sciences. This study discusses the Gutman index of nilradical graphs in the commutative ring with unity.A nilradical graph whose vertices are non-zero nilpotent elements, when the domain is a commutative ring with units, it forms a complete graph only if the commutative ring with units we use is limited to a positive integer modulo n (Z_n). Where n is the square of the prime number p which is less than equal to 3. It is known that the general pattern of harmonic indices and Gutman indices of nilradical graphs in the commutative ring with unity are H(N(Z_(n=p^2 ) ))=((p-2)^2+(p -2))/2(p-2) and Gut(N(Z_(n=p^2 ) ))=(1/2 ((p-2)^2+(p-2))) (p- 2)^2 respectively. In its application, this general form can be used as a numerical parameter of a graph in chemical graph theory, molecular topology, and mathematical chemistry.
图论仍然是一个值得讨论的重要课题。这是因为到目前为止,图论在各个学科中都有许多实际应用,例如生物学、计算机科学、经济学、信息工程、语言学、数学、健康和社会科学。讨论了具有单位交换环上零根图的Gutman指数。一个顶点为非零幂零元的零根图,当定域是一个有单位的可交换环时,只有当我们使用的有单位的可交换环被限制为正整数模n (Z_n)时,它才构成完全图。其中n是小于等于3的质数p的平方。已知单位交换环上零根图的调和指数和古特曼指数的一般模式分别是H(N(Z_(N =p^2))=((p-2)^2+(p -2))/2(p-2)和Gut(N(Z_(N =p^2))=(1/2 ((p-2)^2+(p-2))) (p-2)^2。在化学图论、分子拓扑学和数学化学中,这种一般形式可以作为图的数值参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信