Improved Root Sparse Bayesian Learning for DOA Estimation in Non-uniform Noise

Yifan Zhang, Hangfang Zhao
{"title":"Improved Root Sparse Bayesian Learning for DOA Estimation in Non-uniform Noise","authors":"Yifan Zhang, Hangfang Zhao","doi":"10.1109/CMVIT57620.2023.00017","DOIUrl":null,"url":null,"abstract":"The vigorous development of sparse signal reconstruction (SSR) technology provides a new idea for realizing direction-of-arrival (DOA) estimation. This paper proposes an improved root sparse Bayesian learning algorithm to solve the problem of poor estimation accuracy of traditional DOA estimation algorithms based on SSR technology under off-grid error and non-uniform noise. The improved algorithm not only achieves accurate estimation of the non-uniform noise through a small number of iterations but also uses the expectation-maximization (EM) algorithm to iteratively refine the discrete sampling grid, which shows that the calculation of updating the grid points can be realized by the root of a particular polynomial. The simulation proves that the algorithm has excellent estimation performance under the coarse grid and non-uniform noise.","PeriodicalId":191655,"journal":{"name":"2023 7th International Conference on Machine Vision and Information Technology (CMVIT)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th International Conference on Machine Vision and Information Technology (CMVIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMVIT57620.2023.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The vigorous development of sparse signal reconstruction (SSR) technology provides a new idea for realizing direction-of-arrival (DOA) estimation. This paper proposes an improved root sparse Bayesian learning algorithm to solve the problem of poor estimation accuracy of traditional DOA estimation algorithms based on SSR technology under off-grid error and non-uniform noise. The improved algorithm not only achieves accurate estimation of the non-uniform noise through a small number of iterations but also uses the expectation-maximization (EM) algorithm to iteratively refine the discrete sampling grid, which shows that the calculation of updating the grid points can be realized by the root of a particular polynomial. The simulation proves that the algorithm has excellent estimation performance under the coarse grid and non-uniform noise.
基于改进根稀疏贝叶斯学习的非均匀噪声DOA估计
稀疏信号重构(SSR)技术的蓬勃发展为实现DOA估计提供了新的思路。针对传统基于SSR技术的DOA估计算法在离网误差和非均匀噪声条件下估计精度差的问题,提出了一种改进的根稀疏贝叶斯学习算法。改进算法不仅通过少量迭代实现了对非均匀噪声的准确估计,而且利用期望最大化(EM)算法对离散采样网格进行迭代细化,表明更新网格点的计算可以通过特定多项式的根来实现。仿真结果表明,该算法在粗糙网格和非均匀噪声条件下具有良好的估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信