In-memory neural network accelerator based on phase change memory (PCM) with one-selector/one-resistor (1S1R) structure operated in the subthreshold regime

N. Lepri, P. Gibertini, P. Mannocci, A. Pirovano, I. Tortorelli, P. Fantini, D. Ielmini
{"title":"In-memory neural network accelerator based on phase change memory (PCM) with one-selector/one-resistor (1S1R) structure operated in the subthreshold regime","authors":"N. Lepri, P. Gibertini, P. Mannocci, A. Pirovano, I. Tortorelli, P. Fantini, D. Ielmini","doi":"10.1109/IMW56887.2023.10145949","DOIUrl":null,"url":null,"abstract":"In-memory computing (IMC) shows a disruptive potential for accelerating artificial intelligence (AI) in both inference and training tasks. Scalable IMC, however, requires novel memory technologies with extremely low current. Here we demonstrate ultra-low current matrix-vector multiplication (MVM) in a crosspoint array of phase change memory (PCM) and ovonic threshold switch (OTS) with one-selector/one-resistor (181R) structure operated in the subthreshold regime. Thanks to highly-uniform sub-$\\mu$A currents, the 181R PCM crosspoint array rejects parasitic IR drop across wires, enabling excellent scaling compared to other memory devices. Our simulation of a fullyconnected neural network (FCNN) with ternary weights indicates an accuracy of 98% for MNIST classification with an array size of 512x512, which strongly supports subthreshold-operated 181R crosspoint arrays for neural network inference accelerators.","PeriodicalId":153429,"journal":{"name":"2023 IEEE International Memory Workshop (IMW)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW56887.2023.10145949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In-memory computing (IMC) shows a disruptive potential for accelerating artificial intelligence (AI) in both inference and training tasks. Scalable IMC, however, requires novel memory technologies with extremely low current. Here we demonstrate ultra-low current matrix-vector multiplication (MVM) in a crosspoint array of phase change memory (PCM) and ovonic threshold switch (OTS) with one-selector/one-resistor (181R) structure operated in the subthreshold regime. Thanks to highly-uniform sub-$\mu$A currents, the 181R PCM crosspoint array rejects parasitic IR drop across wires, enabling excellent scaling compared to other memory devices. Our simulation of a fullyconnected neural network (FCNN) with ternary weights indicates an accuracy of 98% for MNIST classification with an array size of 512x512, which strongly supports subthreshold-operated 181R crosspoint arrays for neural network inference accelerators.
基于一选择器/一电阻(1S1R)结构的相变存储器(PCM)内存神经网络加速器工作在亚阈值区域
内存计算(IMC)显示出在推理和训练任务中加速人工智能(AI)的颠覆性潜力。然而,可扩展的IMC需要具有极低电流的新型存储技术。在这里,我们展示了超低电流矩阵向量乘法(MVM)在相变存储器(PCM)和椭圆阈值开关(OTS)的交叉点阵列中,具有一个选择器/一个电阻(181R)结构,在亚阈值范围内工作。由于具有高度均匀的亚A电流,181R PCM交叉点阵列可抑制导线上的寄生IR下降,与其他存储器件相比,可实现出色的缩放。我们对具有三元权值的全连接神经网络(FCNN)的仿真表明,阵列大小为512x512的MNIST分类准确率为98%,这强烈支持用于神经网络推理加速器的亚阈值操作的181R交叉点阵列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信