Александр Владимирович Гусев, Анна Дементьевна Андрейченко, Михаил Юрьевич Котловский, Тарас Денисович Тарасенко, Иван Анатольевич Деев, Ольга Сергеевна Кобякова
{"title":"Краткосрочное прогнозирование показателей смертности на основе оперативных данных методом машинного обучения","authors":"Александр Владимирович Гусев, Анна Дементьевна Андрейченко, Михаил Юрьевич Котловский, Тарас Денисович Тарасенко, Иван Анатольевич Деев, Ольга Сергеевна Кобякова","doi":"10.17323/demreview.v10i2.17768","DOIUrl":null,"url":null,"abstract":"В исследовании была рассмотрена возможность создания и сравнения краткосрочных предиктивных моделей смертности населения региона в ковидный период (2020) и до него (2019) с использованием алгоритма машинного обучения (CatBoost). Использовали оперативные данных о числе умерших Федеральной службы государственной статистики и дополнительно справочники субъектов РФ (демографические и общегеографические данные, сведения о медицинских организациях, показатели системы здравоохранения, медицинские мониторинги, показатели рисков опасностей и др.). Для данных 2019 г. ошибка модели уменьшалась с увеличением периода обучения с 13 до 0,5%. В 2020 г. данного уменьшения не наблюдалось, и ошибка варьировалась между 8 и 16%. Не удалось повысить точность прогнозов при присоединении характеристик регионов. Агрегированные данные имели черты случайного процесса, и отсутствовали предикторы, имеющие значимое влияние на причины смертности или значимо ассоциированные с ними.","PeriodicalId":145499,"journal":{"name":"Демографическое обозрение","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Демографическое обозрение","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17323/demreview.v10i2.17768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
В исследовании была рассмотрена возможность создания и сравнения краткосрочных предиктивных моделей смертности населения региона в ковидный период (2020) и до него (2019) с использованием алгоритма машинного обучения (CatBoost). Использовали оперативные данных о числе умерших Федеральной службы государственной статистики и дополнительно справочники субъектов РФ (демографические и общегеографические данные, сведения о медицинских организациях, показатели системы здравоохранения, медицинские мониторинги, показатели рисков опасностей и др.). Для данных 2019 г. ошибка модели уменьшалась с увеличением периода обучения с 13 до 0,5%. В 2020 г. данного уменьшения не наблюдалось, и ошибка варьировалась между 8 и 16%. Не удалось повысить точность прогнозов при присоединении характеристик регионов. Агрегированные данные имели черты случайного процесса, и отсутствовали предикторы, имеющие значимое влияние на причины смертности или значимо ассоциированные с ними.