Learning to Rate Clinical Concepts Using Simulated Clinician Feedback

Mohammad Alsulmi, Ben Carterette
{"title":"Learning to Rate Clinical Concepts Using Simulated Clinician Feedback","authors":"Mohammad Alsulmi, Ben Carterette","doi":"10.1145/3025171.3025232","DOIUrl":null,"url":null,"abstract":"We present a user-based model for rating concepts (i.e., words and phrases) in clinical queries based on their relevance to clinical decision making. Our approach can be adopted by information retrieval systems (e.g., search engines) to identify the most important concepts in user queries in order to better understand user intent and to improve search results. In our experiments, we examine several learning algorithms and show that by using simulated user feedback, our approach can predict the ratings of the clinical concepts in newly unseen queries with high prediction accuracy.","PeriodicalId":166632,"journal":{"name":"Proceedings of the 22nd International Conference on Intelligent User Interfaces","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3025171.3025232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a user-based model for rating concepts (i.e., words and phrases) in clinical queries based on their relevance to clinical decision making. Our approach can be adopted by information retrieval systems (e.g., search engines) to identify the most important concepts in user queries in order to better understand user intent and to improve search results. In our experiments, we examine several learning algorithms and show that by using simulated user feedback, our approach can predict the ratings of the clinical concepts in newly unseen queries with high prediction accuracy.
学习使用模拟临床医生反馈评价临床概念
我们提出了一个基于用户的模型,用于根据临床查询与临床决策的相关性对概念(即单词和短语)进行评级。我们的方法可以被信息检索系统(例如搜索引擎)采用,以识别用户查询中最重要的概念,以便更好地理解用户意图并改进搜索结果。在我们的实验中,我们研究了几种学习算法,并表明通过使用模拟的用户反馈,我们的方法可以在新看不见的查询中预测临床概念的评级,并且预测精度很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信