Towards a Universal FPGA Matrix-Vector Multiplication Architecture

S. Kestur, John D. Davis, Eric S. Chung
{"title":"Towards a Universal FPGA Matrix-Vector Multiplication Architecture","authors":"S. Kestur, John D. Davis, Eric S. Chung","doi":"10.1109/FCCM.2012.12","DOIUrl":null,"url":null,"abstract":"We present the design and implementation of a universal, single-bit stream library for accelerating matrix-vector multiplication using FPGAs. Our library handles multiple matrix encodings ranging from dense to multiple sparse formats. A key novelty in our approach is the introduction of a hardware-optimized sparse matrix representation called Compressed Variable-Length Bit Vector (CVBV), which reduces the storage and bandwidth requirements up to 43% (on average 25%) compared to compressed sparse row (CSR) across all the matrices from the University of Florida Sparse Matrix Collection. Our hardware incorporates a runtime-programmable decoder that performs on-the-fly-decoding of various formats such as Dense, COO, CSR, DIA, and ELL. The flexibility and scalability of our design is demonstrated across two FPGA platforms: (1) the BEE3 (Virtex-5 LX155T with 16GB of DRAM) and (2) ML605 (Virtex-6 LX240T with 2GB of DRAM). For dense matrices, our approach scales to large data sets with over 1 billion elements, and achieves robust performance independent of the matrix aspect ratio. For sparse matrices, our approach using a compressed representation reduces the overall bandwidth while also achieving comparable efficiency relative to state-of-the-art approaches.","PeriodicalId":226197,"journal":{"name":"2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2012.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

We present the design and implementation of a universal, single-bit stream library for accelerating matrix-vector multiplication using FPGAs. Our library handles multiple matrix encodings ranging from dense to multiple sparse formats. A key novelty in our approach is the introduction of a hardware-optimized sparse matrix representation called Compressed Variable-Length Bit Vector (CVBV), which reduces the storage and bandwidth requirements up to 43% (on average 25%) compared to compressed sparse row (CSR) across all the matrices from the University of Florida Sparse Matrix Collection. Our hardware incorporates a runtime-programmable decoder that performs on-the-fly-decoding of various formats such as Dense, COO, CSR, DIA, and ELL. The flexibility and scalability of our design is demonstrated across two FPGA platforms: (1) the BEE3 (Virtex-5 LX155T with 16GB of DRAM) and (2) ML605 (Virtex-6 LX240T with 2GB of DRAM). For dense matrices, our approach scales to large data sets with over 1 billion elements, and achieves robust performance independent of the matrix aspect ratio. For sparse matrices, our approach using a compressed representation reduces the overall bandwidth while also achieving comparable efficiency relative to state-of-the-art approaches.
一种通用的FPGA矩阵向量乘法架构
我们提出了一个通用的单比特流库的设计和实现,用于使用fpga加速矩阵向量乘法。我们的库处理从密集到多种稀疏格式的多种矩阵编码。我们方法的一个关键新颖之处在于引入了一种硬件优化的稀疏矩阵表示,称为压缩变长位向量(CVBV),与来自佛罗里达大学稀疏矩阵集合的所有矩阵的压缩稀疏行(CSR)相比,它将存储和带宽需求降低了43%(平均25%)。我们的硬件集成了一个运行时可编程的解码器,可以执行各种格式的动态解码,如Dense, COO, CSR, DIA和ELL。我们设计的灵活性和可扩展性在两个FPGA平台上得到了证明:(1)BEE3 (Virtex-5 LX155T, 16GB DRAM)和(2)ML605 (Virtex-6 LX240T, 2GB DRAM)。对于密集矩阵,我们的方法可扩展到具有超过10亿个元素的大型数据集,并实现与矩阵宽高比无关的稳健性能。对于稀疏矩阵,我们使用压缩表示的方法减少了总体带宽,同时相对于最先进的方法也实现了相当的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信