Software Defect Prediction Using Dynamic Support Vector Machine

B. Shuai, Haifeng Li, Mengjun Li, Quan Zhang, Chaojing Tang
{"title":"Software Defect Prediction Using Dynamic Support Vector Machine","authors":"B. Shuai, Haifeng Li, Mengjun Li, Quan Zhang, Chaojing Tang","doi":"10.1109/CIS.2013.61","DOIUrl":null,"url":null,"abstract":"In order to solve the problems of traditional SVM classifier for software defect prediction, this paper proposes a novel dynamic SVM method based on improved cost-sensitive SVM (CSSVM) which is optimized by the Genetic Algorithm (GA). Through selecting the geometric classification accuracy as the fitness function, the GA method could improve the performance of CSSVM by enhancing the accuracy of defective modules and reducing the total cost in the whole decision. Experimental results show that the GA-CSSVM method could achieve higher AUC value which denotes better prediction accuracy both for minority and majority samples in the imbalanced software defect data set.","PeriodicalId":294223,"journal":{"name":"2013 Ninth International Conference on Computational Intelligence and Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2013.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In order to solve the problems of traditional SVM classifier for software defect prediction, this paper proposes a novel dynamic SVM method based on improved cost-sensitive SVM (CSSVM) which is optimized by the Genetic Algorithm (GA). Through selecting the geometric classification accuracy as the fitness function, the GA method could improve the performance of CSSVM by enhancing the accuracy of defective modules and reducing the total cost in the whole decision. Experimental results show that the GA-CSSVM method could achieve higher AUC value which denotes better prediction accuracy both for minority and majority samples in the imbalanced software defect data set.
基于动态支持向量机的软件缺陷预测
为了解决传统支持向量机分类器在软件缺陷预测中存在的问题,提出了一种基于改进的代价敏感支持向量机(CSSVM)的基于遗传算法优化的动态支持向量机方法。通过选择几何分类精度作为适应度函数,遗传算法可以通过提高缺陷模块的准确率和降低整个决策的总成本来提高CSSVM的性能。实验结果表明,GA-CSSVM方法可以获得较高的AUC值,这表明在不平衡软件缺陷数据集中,无论对少数样本还是多数样本,GA-CSSVM方法都具有较好的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信