Layrub: layer-centric GPU memory reuse and data migration in extreme-scale deep learning systems

Bo Liu, Wenbin Jiang, Hai Jin, Xuanhua Shi, Yang Ma
{"title":"Layrub: layer-centric GPU memory reuse and data migration in extreme-scale deep learning systems","authors":"Bo Liu, Wenbin Jiang, Hai Jin, Xuanhua Shi, Yang Ma","doi":"10.1145/3178487.3178528","DOIUrl":null,"url":null,"abstract":"Growing accuracy and robustness of Deep Neural Networks (DNN) models are accompanied by growing model capacity (going deeper or wider). However, high memory requirements of those models make it difficult to execute the training process in one GPU. To address it, we first identify the memory usage characteristics for deep and wide convolutional networks, and demonstrate the opportunities of memory reuse on both intra-layer and inter-layer levels. We then present Layrub, a runtime data placement strategy that orchestrates the execution of training process. It achieves layer-centric reuse to reduce memory consumption for extreme-scale deep learning that cannot be run on one single GPU.","PeriodicalId":193776,"journal":{"name":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178487.3178528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Growing accuracy and robustness of Deep Neural Networks (DNN) models are accompanied by growing model capacity (going deeper or wider). However, high memory requirements of those models make it difficult to execute the training process in one GPU. To address it, we first identify the memory usage characteristics for deep and wide convolutional networks, and demonstrate the opportunities of memory reuse on both intra-layer and inter-layer levels. We then present Layrub, a runtime data placement strategy that orchestrates the execution of training process. It achieves layer-centric reuse to reduce memory consumption for extreme-scale deep learning that cannot be run on one single GPU.
Layrub:极端规模深度学习系统中以层为中心的GPU内存重用和数据迁移
深度神经网络(DNN)模型精度和鲁棒性的提高伴随着模型容量的增长(深度或广度)。然而,这些模型的高内存要求使得在一个GPU上执行训练过程变得困难。为了解决这个问题,我们首先确定了深度和宽卷积网络的内存使用特征,并展示了在层内和层间级别上内存重用的机会。然后,我们介绍Layrub,这是一个运行时数据放置策略,可以编排训练过程的执行。它实现了以层为中心的重用,以减少无法在单个GPU上运行的极端规模深度学习的内存消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信