Graphical Modeling for Selecting Input Variables of Short-term Load Forecasting

H. Mori, E. Kurata
{"title":"Graphical Modeling for Selecting Input Variables of Short-term Load Forecasting","authors":"H. Mori, E. Kurata","doi":"10.1109/PCT.2007.4538466","DOIUrl":null,"url":null,"abstract":"This paper proposes a Graphical Modeling method for selecting input variables of short-term load forecasting in power systems. Short-term load forecasting plays a key role to smooth operation and planning such as economic load dispatching, unit commitment, etc. In addition, the deregulated power market players require more accurate prediction models for short-term load forecasting to maximize a profit and minimize the risk As a result, it is of importance to focus on the relationship between input and output variables. In this paper, a graphical modeling method is used to determine the appropriate input variables of ANN (artificial neural network) model in short-term load forecasting. It has advantage that more effective input variables are selected because of excluding the pseudo-correlation that gives more errors to the predicted value. The proposed method is tested for real data of short-term load forecasting.","PeriodicalId":356805,"journal":{"name":"2007 IEEE Lausanne Power Tech","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Lausanne Power Tech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCT.2007.4538466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper proposes a Graphical Modeling method for selecting input variables of short-term load forecasting in power systems. Short-term load forecasting plays a key role to smooth operation and planning such as economic load dispatching, unit commitment, etc. In addition, the deregulated power market players require more accurate prediction models for short-term load forecasting to maximize a profit and minimize the risk As a result, it is of importance to focus on the relationship between input and output variables. In this paper, a graphical modeling method is used to determine the appropriate input variables of ANN (artificial neural network) model in short-term load forecasting. It has advantage that more effective input variables are selected because of excluding the pseudo-correlation that gives more errors to the predicted value. The proposed method is tested for real data of short-term load forecasting.
短期负荷预测输入变量选择的图形化建模
提出了一种电力系统短期负荷预测输入变量选择的图形化建模方法。短期负荷预测对电力系统的经济负荷调度、机组承诺等平稳运行和规划起着至关重要的作用。此外,放松管制的电力市场参与者需要更准确的预测模型进行短期负荷预测,以实现利润最大化和风险最小化。因此,关注输入和输出变量之间的关系非常重要。本文采用图形化建模的方法确定短期负荷预测中人工神经网络模型的适当输入变量。它的优点是选择了更有效的输入变量,因为它排除了给预测值带来更多误差的伪相关。该方法在短期负荷预测的实际数据中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信