A Fast CUDA-Based Implementation for the Euclidean Distance Transform

F. Zampirolli, Leonardo Filipe
{"title":"A Fast CUDA-Based Implementation for the Euclidean Distance Transform","authors":"F. Zampirolli, Leonardo Filipe","doi":"10.1109/HPCS.2017.123","DOIUrl":null,"url":null,"abstract":"In Image Processing efficient algorithms are always pursued for applications that use the most advanced hardware architectures. Distance Transform is a classic operation for blurring effects, skeletonizing, segmentation and various other purposes. This article presents two implementations of the Euclidean Distance Transform using CUDA (Compute Unified Device Architecture) in GPU (Graphics Process Unit): of the Meijster's Sequential Algorithm and another is a very efficient algorithm of simple structure. Both using only shared memory. The results presented herein used images of various types and sizes to show a faster run time compared with the best-known implementations in CPU.","PeriodicalId":115758,"journal":{"name":"2017 International Conference on High Performance Computing & Simulation (HPCS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS.2017.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In Image Processing efficient algorithms are always pursued for applications that use the most advanced hardware architectures. Distance Transform is a classic operation for blurring effects, skeletonizing, segmentation and various other purposes. This article presents two implementations of the Euclidean Distance Transform using CUDA (Compute Unified Device Architecture) in GPU (Graphics Process Unit): of the Meijster's Sequential Algorithm and another is a very efficient algorithm of simple structure. Both using only shared memory. The results presented herein used images of various types and sizes to show a faster run time compared with the best-known implementations in CPU.
基于cuda的欧氏距离变换快速实现
在图像处理中,使用最先进的硬件架构的应用程序总是追求高效的算法。距离变换是用于模糊效果、骨架化、分割和各种其他目的的经典操作。本文介绍了在GPU(图形处理单元)中使用CUDA(计算统一设备架构)实现欧几里得距离变换的两种方法:一种是Meijster的顺序算法,另一种是结构简单的高效算法。两者都只使用共享内存。本文给出的结果使用了各种类型和大小的图像,与最著名的CPU实现相比,显示了更快的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信