{"title":"Perching Drones for Distributed Communication Systems in IoT Applications","authors":"Jingmin Liu, Wilson Yik, Bernard Saw, H. Hesse","doi":"10.1109/WF-IoT54382.2022.10152182","DOIUrl":null,"url":null,"abstract":"A major limitation to using drones for IoT applications is the limited flight time. What if drones could operate without the need to land or return to home for recharging? This paper presents a perching concept for multirotor drones which allows them to operate as perpetual sensor or communication hubs in remote or urban areas. Unlike existing concepts of perching drones which rely on grasping mechanism and spikes, the proposed concept uses electro-permanent magnets (EPM) to attach to ferrous surfaces. EPMs are small, lightweight and can hold up to 15kg potentially enabling the perching of heavy-lifting drones. Similar to electromagnetic door locks, EPMs can be charged and discharged with a small power supply operating at 5V which is suitable for a range of multirotor vehicles. The paper experimentally demonstrates the perching concept for horizontal and vertical surfaces in manual flight and provides a control strategy to enable autonomous perching manoeuvres.","PeriodicalId":176605,"journal":{"name":"2022 IEEE 8th World Forum on Internet of Things (WF-IoT)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th World Forum on Internet of Things (WF-IoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WF-IoT54382.2022.10152182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A major limitation to using drones for IoT applications is the limited flight time. What if drones could operate without the need to land or return to home for recharging? This paper presents a perching concept for multirotor drones which allows them to operate as perpetual sensor or communication hubs in remote or urban areas. Unlike existing concepts of perching drones which rely on grasping mechanism and spikes, the proposed concept uses electro-permanent magnets (EPM) to attach to ferrous surfaces. EPMs are small, lightweight and can hold up to 15kg potentially enabling the perching of heavy-lifting drones. Similar to electromagnetic door locks, EPMs can be charged and discharged with a small power supply operating at 5V which is suitable for a range of multirotor vehicles. The paper experimentally demonstrates the perching concept for horizontal and vertical surfaces in manual flight and provides a control strategy to enable autonomous perching manoeuvres.