Submodular Clustering in Low Dimensions

A. Backurs, Sariel Har-Peled
{"title":"Submodular Clustering in Low Dimensions","authors":"A. Backurs, Sariel Har-Peled","doi":"10.4230/LIPIcs.SWAT.2020.8","DOIUrl":null,"url":null,"abstract":"We study a clustering problem where the goal is to maximize the coverage of the input points by $k$ chosen centers. Specifically, given a set of $n$ points $P \\subseteq \\mathbb{R}^d$, the goal is to pick $k$ centers $C \\subseteq \\mathbb{R}^d$ that maximize the service $ \\sum_{p \\in P}\\mathsf{\\varphi}\\bigl( \\mathsf{d}(p,C) \\bigr) $ to the points $P$, where $\\mathsf{d}(p,C)$ is the distance of $p$ to its nearest center in $C$, and $\\mathsf{\\varphi}$ is a non-increasing service function $\\mathsf{\\varphi} : \\mathbb{R}^+ \\to \\mathbb{R}^+$. This includes problems of placing $k$ base stations as to maximize the total bandwidth to the clients -- indeed, the closer the client is to its nearest base station, the more data it can send/receive, and the target is to place $k$ base stations so that the total bandwidth is maximized. We provide an $n^{\\varepsilon^{-O(d)}}$ time algorithm for this problem that achieves a $(1-\\varepsilon)$-approximation. Notably, the runtime does not depend on the parameter $k$ and it works for an arbitrary non-increasing service function $\\mathsf{\\varphi} : \\mathbb{R}^+ \\to \\mathbb{R}^+$.","PeriodicalId":447445,"journal":{"name":"Scandinavian Workshop on Algorithm Theory","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Workshop on Algorithm Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SWAT.2020.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a clustering problem where the goal is to maximize the coverage of the input points by $k$ chosen centers. Specifically, given a set of $n$ points $P \subseteq \mathbb{R}^d$, the goal is to pick $k$ centers $C \subseteq \mathbb{R}^d$ that maximize the service $ \sum_{p \in P}\mathsf{\varphi}\bigl( \mathsf{d}(p,C) \bigr) $ to the points $P$, where $\mathsf{d}(p,C)$ is the distance of $p$ to its nearest center in $C$, and $\mathsf{\varphi}$ is a non-increasing service function $\mathsf{\varphi} : \mathbb{R}^+ \to \mathbb{R}^+$. This includes problems of placing $k$ base stations as to maximize the total bandwidth to the clients -- indeed, the closer the client is to its nearest base station, the more data it can send/receive, and the target is to place $k$ base stations so that the total bandwidth is maximized. We provide an $n^{\varepsilon^{-O(d)}}$ time algorithm for this problem that achieves a $(1-\varepsilon)$-approximation. Notably, the runtime does not depend on the parameter $k$ and it works for an arbitrary non-increasing service function $\mathsf{\varphi} : \mathbb{R}^+ \to \mathbb{R}^+$.
低维次模聚类
我们研究了一个聚类问题,其目标是通过$k$选择的中心来最大化输入点的覆盖率。具体来说,给定一组$n$点$P \subseteq \mathbb{R}^d$,目标是选择$k$点$C \subseteq \mathbb{R}^d$,使$ \sum_{p \in P}\mathsf{\varphi}\bigl( \mathsf{d}(p,C) \bigr) $点到$P$点的服务最大化,其中$\mathsf{d}(p,C)$是$p$到最近的$C$中心的距离,$\mathsf{\varphi}$是一个不增加的服务函数$\mathsf{\varphi} : \mathbb{R}^+ \to \mathbb{R}^+$。这包括放置$k$基站以最大化到客户端的总带宽的问题——实际上,客户端离它最近的基站越近,它可以发送/接收的数据就越多,而目标是放置$k$基站以最大化总带宽。我们为这个问题提供了一个$n^{\varepsilon^{-O(d)}}$时间算法,实现了$(1-\varepsilon)$ -近似。值得注意的是,运行时不依赖于参数$k$,它适用于任意不增加的业务函数$\mathsf{\varphi} : \mathbb{R}^+ \to \mathbb{R}^+$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信