MOD3NN: A Framework for Automatic Signal Modulation Detection Using 3D CNN

Vishal Perekadan, Chaity Banerjee, Tathagata Mukherjee, E. Pasiliao, Hovannes Kulhandjian, Michel Kulhandjian
{"title":"MOD3NN: A Framework for Automatic Signal Modulation Detection Using 3D CNN","authors":"Vishal Perekadan, Chaity Banerjee, Tathagata Mukherjee, E. Pasiliao, Hovannes Kulhandjian, Michel Kulhandjian","doi":"10.32473/flairs.36.133383","DOIUrl":null,"url":null,"abstract":"In this work, we present an application of a three-dimensional convolutional neural network for the task of automatic modulation recognition from raw I/Q signal data.  Raw I/Q signal data exhibits a special “helical” structure that can be exploited with three-dimensional convolutions (3D convolutions) to learn spatio-temporal features from the signal for the problem of modulation recognition. By tweaking the convolutional filters to learn the helical symmetry of the data, we can design a shallow network for automatic modulation recognition (AMR). We present the results of our experiments with raw I/Q signal data collected in an uncalibrated radio frequency (RF) environment using several different modulation schemes. We show that with our methods and implementation, we can achieve around 99 % accuracy for automatic modulation recognition, for a variety of practical modulation techniques without the need for explicit feature engineering.","PeriodicalId":302103,"journal":{"name":"The International FLAIRS Conference Proceedings","volume":"367 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International FLAIRS Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present an application of a three-dimensional convolutional neural network for the task of automatic modulation recognition from raw I/Q signal data.  Raw I/Q signal data exhibits a special “helical” structure that can be exploited with three-dimensional convolutions (3D convolutions) to learn spatio-temporal features from the signal for the problem of modulation recognition. By tweaking the convolutional filters to learn the helical symmetry of the data, we can design a shallow network for automatic modulation recognition (AMR). We present the results of our experiments with raw I/Q signal data collected in an uncalibrated radio frequency (RF) environment using several different modulation schemes. We show that with our methods and implementation, we can achieve around 99 % accuracy for automatic modulation recognition, for a variety of practical modulation techniques without the need for explicit feature engineering.
MOD3NN:一种基于3D CNN的自动信号调制检测框架
在这项工作中,我们提出了一个三维卷积神经网络应用于从原始I/Q信号数据中自动调制识别的任务。原始I/Q信号数据显示出一种特殊的“螺旋”结构,可以利用三维卷积(3D卷积)从信号中学习时空特征,以解决调制识别问题。通过调整卷积滤波器来学习数据的螺旋对称性,我们可以设计一个用于自动调制识别(AMR)的浅网络。我们介绍了在未校准的射频(RF)环境中使用几种不同调制方案收集的原始I/Q信号数据的实验结果。我们表明,通过我们的方法和实现,我们可以在不需要显式特征工程的情况下,对各种实际调制技术实现大约99%的自动调制识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信