Image Matting for Sparse User Input by Iterative Refinement

Stephen Tierney, Geoff Bull, Junbin Gao
{"title":"Image Matting for Sparse User Input by Iterative Refinement","authors":"Stephen Tierney, Geoff Bull, Junbin Gao","doi":"10.1109/DICTA.2013.6691499","DOIUrl":null,"url":null,"abstract":"Image matting is the process of extracting the foreground component from an image. Since matting is an under constrained problem most techniques address the case where users supply some dense labelling to indicate known foreground and background regions. In contrast to other techniques our proposed technique is unique in that focuses on achieving satisfactory results with extremely sparse input, e.g. a handful of individual pixel labels. We propose an iterative extension to the class of affinity matting techniques. Analysis of results from affinity matting with sparse labels reveals that the low quality alpha mattes can be processed and re-used for the next iteration. We demonstrate this extension using the recent KNN matting and show that this technique can greatly improve matting results.","PeriodicalId":231632,"journal":{"name":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2013.6691499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Image matting is the process of extracting the foreground component from an image. Since matting is an under constrained problem most techniques address the case where users supply some dense labelling to indicate known foreground and background regions. In contrast to other techniques our proposed technique is unique in that focuses on achieving satisfactory results with extremely sparse input, e.g. a handful of individual pixel labels. We propose an iterative extension to the class of affinity matting techniques. Analysis of results from affinity matting with sparse labels reveals that the low quality alpha mattes can be processed and re-used for the next iteration. We demonstrate this extension using the recent KNN matting and show that this technique can greatly improve matting results.
基于迭代细化的稀疏用户输入图像抠图
图像抠图是从图像中提取前景分量的过程。由于抠图是一个受限的问题,大多数技术解决的情况下,用户提供一些密集的标签,以表明已知的前景和背景区域。与其他技术相比,我们提出的技术的独特之处在于,它专注于在极其稀疏的输入下获得令人满意的结果,例如少数单个像素标签。我们提出一个迭代扩展类亲和抠图技术。对稀疏标签亲和抠图结果的分析表明,低质量的alpha抠图可以被处理并在下一次迭代中重用。我们使用最近的KNN抠图来演示这个扩展,并表明这种技术可以大大改善抠图结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信