Genetic Algorithm for Generating Counterexample in Stochastic Model Checking

Tingting Zheng, Yang Liu
{"title":"Genetic Algorithm for Generating Counterexample in Stochastic Model Checking","authors":"Tingting Zheng, Yang Liu","doi":"10.1145/3301326.3301348","DOIUrl":null,"url":null,"abstract":"Counterexamples are the most effective feature to convince system engineers about the value of formal verification. Generating the smallest counterexample in stochastic model checking has been proved to be NP-complete. In this paper, we apply the genetic algorithm to generate a counterexample for stochastic model checking. We use the diagnostic subgraph to represent a counterexample and employs indirect coding method to generate the more effective path. We implemented our method based on the stochastic model checker PRISM and applied it to some cases, in order to illustrate its applicability.","PeriodicalId":294040,"journal":{"name":"Proceedings of the 2018 VII International Conference on Network, Communication and Computing","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 VII International Conference on Network, Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3301326.3301348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Counterexamples are the most effective feature to convince system engineers about the value of formal verification. Generating the smallest counterexample in stochastic model checking has been proved to be NP-complete. In this paper, we apply the genetic algorithm to generate a counterexample for stochastic model checking. We use the diagnostic subgraph to represent a counterexample and employs indirect coding method to generate the more effective path. We implemented our method based on the stochastic model checker PRISM and applied it to some cases, in order to illustrate its applicability.
随机模型检验中反例生成的遗传算法
反例是使系统工程师相信形式验证的价值的最有效的特征。证明了随机模型检验中最小反例的生成是np完全的。本文应用遗传算法生成随机模型检验的一个反例。我们使用诊断子图来表示反例,并采用间接编码方法来生成更有效的路径。我们基于随机模型检查器PRISM实现了我们的方法,并将其应用于一些案例,以说明它的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信