Robust Smartphone Mode Recognition

I. Klein, Yuval Solaz, Rotem Alaluf
{"title":"Robust Smartphone Mode Recognition","authors":"I. Klein, Yuval Solaz, Rotem Alaluf","doi":"10.1109/ICSEE.2018.8646011","DOIUrl":null,"url":null,"abstract":"Smartphone based pedestrian dead reckoning (PDR) approach is commonly used for indoor positioning. Recognition of the smartphone mode can improve PDR positioning accuracy. In this paper, we employ machine learning classification algorithms to recognize the smartphone modes (e.g. pocket or swing) and thereby enabling the choice of a proper gain value to improve PDR positioning accuracy. In particular, we focus on two classification approaches: 1) tree based approaches: random forest, gradient boosting and CatBoost 2) neural network approaches: convolutional neural network, recurrent neural networks with long short-term memory units, gated recurrent unit and residual recurrent neural networks. Experimental results obtained using thirteen participates walking in an inhomogeneous environments and smartphone modes show successes of more than 97% in classifying the smartphone modes using neural network approaches.","PeriodicalId":254455,"journal":{"name":"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEE.2018.8646011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Smartphone based pedestrian dead reckoning (PDR) approach is commonly used for indoor positioning. Recognition of the smartphone mode can improve PDR positioning accuracy. In this paper, we employ machine learning classification algorithms to recognize the smartphone modes (e.g. pocket or swing) and thereby enabling the choice of a proper gain value to improve PDR positioning accuracy. In particular, we focus on two classification approaches: 1) tree based approaches: random forest, gradient boosting and CatBoost 2) neural network approaches: convolutional neural network, recurrent neural networks with long short-term memory units, gated recurrent unit and residual recurrent neural networks. Experimental results obtained using thirteen participates walking in an inhomogeneous environments and smartphone modes show successes of more than 97% in classifying the smartphone modes using neural network approaches.
强大的智能手机模式识别
基于智能手机的行人航位推算(PDR)方法通常用于室内定位。识别智能手机模式可以提高PDR定位精度。在本文中,我们使用机器学习分类算法来识别智能手机模式(例如口袋或摆动),从而选择合适的增益值来提高PDR定位精度。我们特别关注两种分类方法:1)基于树的方法:随机森林,梯度增强和CatBoost 2)神经网络方法:卷积神经网络,具有长短期记忆单元的递归神经网络,门控递归单元和残差递归神经网络。使用13个参与者在非均匀环境和智能手机模式下行走的实验结果表明,使用神经网络方法对智能手机模式进行分类的成功率超过97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信