Automated 3D Labelling of Fibroblasts and Endothelial Cells in SEM-Imaged Placenta using Deep Learning

Benita Scout Mackay, Sophie Blundell, O. Etter, Yunhui Xie, M. McDonnel, M. Praeger, J. Grant-Jacob, R. Eason, Rohan M. Lewis, B. Mills
{"title":"Automated 3D Labelling of Fibroblasts and Endothelial Cells in SEM-Imaged Placenta using Deep Learning","authors":"Benita Scout Mackay, Sophie Blundell, O. Etter, Yunhui Xie, M. McDonnel, M. Praeger, J. Grant-Jacob, R. Eason, Rohan M. Lewis, B. Mills","doi":"10.5220/0008949700460053","DOIUrl":null,"url":null,"abstract":"Analysis of fibroblasts within placenta is necessary for research into placental growth-factors, which are linked to lifelong health and chronic disease risk. 2D analysis of fibroblasts can be challenging due to the variation and complexity of their structure. 3D imaging can provide important visualisation, but the images produced are extremely labour intensive to construct because of the extensive manual processing required. Machine learning can be used to automate the labelling process for faster 3D analysis. Here, a deep neural network is trained to label a fibroblast from serial block face scanning electron microscopy (SBFSEM) placental imaging.","PeriodicalId":162397,"journal":{"name":"Bioimaging (Bristol. Print)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimaging (Bristol. Print)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0008949700460053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Analysis of fibroblasts within placenta is necessary for research into placental growth-factors, which are linked to lifelong health and chronic disease risk. 2D analysis of fibroblasts can be challenging due to the variation and complexity of their structure. 3D imaging can provide important visualisation, but the images produced are extremely labour intensive to construct because of the extensive manual processing required. Machine learning can be used to automate the labelling process for faster 3D analysis. Here, a deep neural network is trained to label a fibroblast from serial block face scanning electron microscopy (SBFSEM) placental imaging.
利用深度学习在sem成像的胎盘中自动标记成纤维细胞和内皮细胞
分析胎盘内的成纤维细胞是研究胎盘生长因子的必要条件,胎盘生长因子与终身健康和慢性疾病风险有关。由于成纤维细胞结构的变化和复杂性,其二维分析具有挑战性。3D成像可以提供重要的可视化效果,但由于需要大量的人工处理,生成的图像是极其劳动密集型的。机器学习可用于自动化标签过程,以实现更快的3D分析。在这里,一个深度神经网络被训练来标记来自连续块面扫描电子显微镜(SBFSEM)胎盘成像的成纤维细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信