Heart Disease Prediction and Treatment Suggestion Using Machine Learning

Ajay K. Gaikwad, Dipankar Sen, Sourabh Patil, Prof Ujvala Patil
{"title":"Heart Disease Prediction and Treatment Suggestion Using Machine Learning","authors":"Ajay K. Gaikwad, Dipankar Sen, Sourabh Patil, Prof Ujvala Patil","doi":"10.55041/isjem00354","DOIUrl":null,"url":null,"abstract":"Disease anticipation systems are the better alternatives, to avoid the human errors in disease diagnosis and also assist in disease interference. Nowadays, the number of heart disease patients is increasing so we need an optimal heart disease prediction and treatment suggestion system. Heart disease dataset preparation, prediction system’s process flow design, process execution and results evaluation are the most common life cycle modules of any heart disease prediction system. Input dataset attributes modeling, attribute risk factor calculation; threshold determination and achieving the high accuracy in disease prediction are the major limitations of the existing heart disease prediction and treatment proposal systems. Keywords: Machine learning, Decision tree, Logistic regression.","PeriodicalId":285811,"journal":{"name":"International Scientific Journal of Engineering and Management","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Scientific Journal of Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55041/isjem00354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Disease anticipation systems are the better alternatives, to avoid the human errors in disease diagnosis and also assist in disease interference. Nowadays, the number of heart disease patients is increasing so we need an optimal heart disease prediction and treatment suggestion system. Heart disease dataset preparation, prediction system’s process flow design, process execution and results evaluation are the most common life cycle modules of any heart disease prediction system. Input dataset attributes modeling, attribute risk factor calculation; threshold determination and achieving the high accuracy in disease prediction are the major limitations of the existing heart disease prediction and treatment proposal systems. Keywords: Machine learning, Decision tree, Logistic regression.
基于机器学习的心脏病预测和治疗建议
疾病预测系统是较好的替代方案,既可以避免人为的疾病诊断错误,又可以辅助疾病干预。在心脏病患者数量不断增加的今天,我们需要一个优化的心脏病预测和治疗建议系统。心脏病数据集准备、预测系统流程设计、流程执行和结果评估是任何心脏病预测系统中最常见的生命周期模块。输入数据集属性建模,属性风险因子计算;阈值的确定和疾病预测的高精度是现有心脏病预测和治疗方案系统的主要局限性。关键词:机器学习,决策树,逻辑回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信