{"title":"Pengelompokan Daerah Rawan Kriminalitas di Sulawesi Selatan Menggunakan Metode K-means Clustering","authors":"I. Irwan, Wahidah Sanusi, Febriyanto Saman","doi":"10.35580/jmathcos.v5i1.32719","DOIUrl":null,"url":null,"abstract":"Penelitian ini merupakan penelitian terapan yang menekankan cara melaksanakan analisis cluster secara matematis, mengetahui bagaimana aplikasi k-means clustering, dan ciri dari setiap kelompok daerah rawan kriminalitas. Adapun data simulasi yang digunakan pada penelitian ini adalah data yang diperoleh dari Badan Pusat Statistika (BPS) Propinsi Sulawesi Selatan. Data tersebut selanjutnya dianalisis dengan metode K-means clustering. Hasil penelitian menunjukan bahwa terdapat empat ciri dari tiap kelompok daerah rawan kriminalitas di Sulawesi Selatan. Kelompok 1 masuk kategori daerah yang cukup aman kriminalitas, Kelompok 2 masuk kategori daerah yang rawan kriminalitas, kelompok 3 masuk ketegori daerah yang aman kriminalitas, dan kelompok 4 masuk kategori daerah yang cukup rawan kriminalitas. Kata Kunci: Analisis Cluster,K-means Clustering, KriminalitasThis research is an applied research that emphasizes how to carry out cluster analysis mathematically, knowing how to apply k-means clustering, and the characteristics of each group of crime-prone areas. The simulation data used in this study is data obtained from the Central Statistics Agency (BPS) of South Sulawesi Province. The data was then analyzed by the K-means clustering method. The results of the study show that there are four characteristics of each group of crime-prone areas in South Sulawesi. Group 1 is categorized as a crime-safe area, Group 2 is categorized as a crime-prone area, group 3 is categorized as a crime-safe area, and group 4 is categorized as an area that is quite prone to crime.Keywords: Cluster Analysis, K-means Clustering, Crime.","PeriodicalId":363413,"journal":{"name":"Journal of Mathematics Computations and Statistics","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics Computations and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35580/jmathcos.v5i1.32719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Penelitian ini merupakan penelitian terapan yang menekankan cara melaksanakan analisis cluster secara matematis, mengetahui bagaimana aplikasi k-means clustering, dan ciri dari setiap kelompok daerah rawan kriminalitas. Adapun data simulasi yang digunakan pada penelitian ini adalah data yang diperoleh dari Badan Pusat Statistika (BPS) Propinsi Sulawesi Selatan. Data tersebut selanjutnya dianalisis dengan metode K-means clustering. Hasil penelitian menunjukan bahwa terdapat empat ciri dari tiap kelompok daerah rawan kriminalitas di Sulawesi Selatan. Kelompok 1 masuk kategori daerah yang cukup aman kriminalitas, Kelompok 2 masuk kategori daerah yang rawan kriminalitas, kelompok 3 masuk ketegori daerah yang aman kriminalitas, dan kelompok 4 masuk kategori daerah yang cukup rawan kriminalitas. Kata Kunci: Analisis Cluster,K-means Clustering, KriminalitasThis research is an applied research that emphasizes how to carry out cluster analysis mathematically, knowing how to apply k-means clustering, and the characteristics of each group of crime-prone areas. The simulation data used in this study is data obtained from the Central Statistics Agency (BPS) of South Sulawesi Province. The data was then analyzed by the K-means clustering method. The results of the study show that there are four characteristics of each group of crime-prone areas in South Sulawesi. Group 1 is categorized as a crime-safe area, Group 2 is categorized as a crime-prone area, group 3 is categorized as a crime-safe area, and group 4 is categorized as an area that is quite prone to crime.Keywords: Cluster Analysis, K-means Clustering, Crime.