{"title":"1D Hematite-[α-Fe2O3]-nanorods prepared by green fabrication for supercapacitor electrodes","authors":"Yu Ge, Md. Ikram Ul Hoque, Q. Qu","doi":"10.1515/eetech-2019-0001","DOIUrl":null,"url":null,"abstract":"Abstract 1D α-hematite nanorods synthesized by a simple, scalable and novel green chemistry method exhibit fast kinetics of the interfacial Faradaic redox reaction yielding a specific capacitance of 140 F·g−1 when used as a battery-type electrode in a supercapacitor. Ample supply and environmental compatibility of the raw material suggest the use of this material. Insufficient stability suggest further investigations.","PeriodicalId":443383,"journal":{"name":"Electrochemical Energy Technology","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical Energy Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eetech-2019-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Abstract 1D α-hematite nanorods synthesized by a simple, scalable and novel green chemistry method exhibit fast kinetics of the interfacial Faradaic redox reaction yielding a specific capacitance of 140 F·g−1 when used as a battery-type electrode in a supercapacitor. Ample supply and environmental compatibility of the raw material suggest the use of this material. Insufficient stability suggest further investigations.