Believe it or not! multi-core CPUs can match GPU performance for a FLOP-intensive application!

R. Bordawekar, Uday Bondhugula, R. Rao
{"title":"Believe it or not! multi-core CPUs can match GPU performance for a FLOP-intensive application!","authors":"R. Bordawekar, Uday Bondhugula, R. Rao","doi":"10.1145/1854273.1854340","DOIUrl":null,"url":null,"abstract":"In this paper, we evaluate performance of a real-world image processing application that uses a cross-correlation algorithm to compare a given image with a reference one. We implement this algorithm on a nVidia GTX 285 GPU using CUDA, and also parallelize it for the Intel Xeon (Nehalem) and IBM Power7 processors, using both manual and automatic techniques. Pthreads and OpenMP with SSE and VSX vector intrinsics are used for the manually parallelized version, while a state-of-the-art optimization framework based on the polyhedral model is used for automatic compiler parallelization and optimization. The best performing versions on the Power7, Nehalem, and GTX 285 run in 1.02s, 1.82s, and 1.22s, respectively. The performance of this algorithm on the nVidia GPU suffers from: (1) a smaller shared memory, (2) unaligned device memory access patterns, (3) expensive atomic operations, and (4) weaker single-thread performance. These results conclusively demonstrate that, under certain conditions, it is possible for a FLOP-intensive structured application running on a multi-core processor to match or even beat the performance of an equivalent GPU version.","PeriodicalId":422461,"journal":{"name":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1854273.1854340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

In this paper, we evaluate performance of a real-world image processing application that uses a cross-correlation algorithm to compare a given image with a reference one. We implement this algorithm on a nVidia GTX 285 GPU using CUDA, and also parallelize it for the Intel Xeon (Nehalem) and IBM Power7 processors, using both manual and automatic techniques. Pthreads and OpenMP with SSE and VSX vector intrinsics are used for the manually parallelized version, while a state-of-the-art optimization framework based on the polyhedral model is used for automatic compiler parallelization and optimization. The best performing versions on the Power7, Nehalem, and GTX 285 run in 1.02s, 1.82s, and 1.22s, respectively. The performance of this algorithm on the nVidia GPU suffers from: (1) a smaller shared memory, (2) unaligned device memory access patterns, (3) expensive atomic operations, and (4) weaker single-thread performance. These results conclusively demonstrate that, under certain conditions, it is possible for a FLOP-intensive structured application running on a multi-core processor to match or even beat the performance of an equivalent GPU version.
信不信由你!多核cpu可以匹配GPU性能的flop密集型应用程序!
在本文中,我们评估了实际图像处理应用程序的性能,该应用程序使用相互关联算法将给定图像与参考图像进行比较。我们使用CUDA在nVidia GTX 285 GPU上实现该算法,并使用手动和自动技术在Intel Xeon (Nehalem)和IBM Power7处理器上并行化该算法。手动并行化版本使用带有SSE和VSX矢量特性的Pthreads和OpenMP,而基于多面体模型的最先进优化框架用于自动编译器并行化和优化。Power7、Nehalem和GTX 285上表现最好的版本分别运行1.02秒、1.82秒和1.22秒。该算法在nVidia GPU上的性能存在以下问题:(1)较小的共享内存,(2)未对齐的设备内存访问模式,(3)昂贵的原子操作,(4)较弱的单线程性能。这些结果最终表明,在某些条件下,在多核处理器上运行的flop密集型结构化应用程序有可能达到甚至超过同等GPU版本的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信