Attractive Features of Butt Coupling between Single/Multi Mode GaAs-VCSELs and SSMF for Green, Low-cost Radio-over-Fiber Systems

J. Nanni, Giada Saderi, Gaetano Bellanca, G. Bosi, A. Raffo, V. Vadalà, P. Debernardi, J. Polleux, G. Tartarini
{"title":"Attractive Features of Butt Coupling between Single/Multi Mode GaAs-VCSELs and SSMF for Green, Low-cost Radio-over-Fiber Systems","authors":"J. Nanni, Giada Saderi, Gaetano Bellanca, G. Bosi, A. Raffo, V. Vadalà, P. Debernardi, J. Polleux, G. Tartarini","doi":"10.1109/MWP54208.2022.9997790","DOIUrl":null,"url":null,"abstract":"Optical transmitters based on Vertical Cavity Surface Emitting Lasers operating in the first optical window (FW-VCSELs) constitute an attractive option to realize Green Radio over Fiber (RoF) systems, due to their low energy consumption. In addition, these devices can take advantage of the widespread existing infrastructures realized on G.652 Standard Single Mode Fibers (SSMF) to develop low-cost RoF connections while remaining transparent for the presently transmitted Fiber-To-The-Home services, which exploit the second and third optical windows. Within this context, the use of simple butt-coupling between FW-VCSELs and SSMF should be a desirable feature, which however is theoretically exposed to possible drawbacks of poor efficiency and two-mode propagation effects. Through a detailed experimental activity referred to commercial high-performance multi- and single-mode FW-VCSELs, it is shown how to optimize their butt-coupling configuration to SSMF reducing the mentioned drawbacks and consider this solution suitable for 5G-and-beyond low-cost Green RoF applications.","PeriodicalId":127318,"journal":{"name":"2022 IEEE International Topical Meeting on Microwave Photonics (MWP)","volume":"10852 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Topical Meeting on Microwave Photonics (MWP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWP54208.2022.9997790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optical transmitters based on Vertical Cavity Surface Emitting Lasers operating in the first optical window (FW-VCSELs) constitute an attractive option to realize Green Radio over Fiber (RoF) systems, due to their low energy consumption. In addition, these devices can take advantage of the widespread existing infrastructures realized on G.652 Standard Single Mode Fibers (SSMF) to develop low-cost RoF connections while remaining transparent for the presently transmitted Fiber-To-The-Home services, which exploit the second and third optical windows. Within this context, the use of simple butt-coupling between FW-VCSELs and SSMF should be a desirable feature, which however is theoretically exposed to possible drawbacks of poor efficiency and two-mode propagation effects. Through a detailed experimental activity referred to commercial high-performance multi- and single-mode FW-VCSELs, it is shown how to optimize their butt-coupling configuration to SSMF reducing the mentioned drawbacks and consider this solution suitable for 5G-and-beyond low-cost Green RoF applications.
绿色、低成本光纤无线电系统中单/多模GaAs-VCSELs和SSMF对接耦合的吸引特性
基于垂直腔面发射激光器工作在第一光窗口(FW-VCSELs)的光发射机由于其低能耗,构成了实现绿色光纤无线电(RoF)系统的一个有吸引力的选择。此外,这些设备可以利用在G.652标准单模光纤(SSMF)上实现的广泛现有基础设施来开发低成本的RoF连接,同时为目前传输的光纤到户服务保持透明,该服务利用第二和第三个光学窗口。在这种情况下,在fw - vcsel和SSMF之间使用简单的对接耦合应该是一个理想的特征,然而,从理论上讲,这可能存在效率低和双模传播效应的缺点。通过商用高性能多模和单模fw - vcsel的详细实验活动,展示了如何优化其对接耦合配置以减少上述缺点,并认为该解决方案适用于5g及以上的低成本绿色RoF应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信