{"title":"Automatically finding performance problems with feedback-directed learning software testing","authors":"M. Grechanik, Chen Fu, Qing Xie","doi":"10.1109/ICSE.2012.6227197","DOIUrl":null,"url":null,"abstract":"A goal of performance testing is to find situations when applications unexpectedly exhibit worsened characteristics for certain combinations of input values. A fundamental question of performance testing is how to select a manageable subset of the input data faster to find performance problems in applications automatically. We offer a novel solution for finding performance problems in applications automatically using black-box software testing. Our solution is an adaptive, feedback-directed learning testing system that learns rules from execution traces of applications and then uses these rules to select test input data automatically for these applications to find more performance problems when compared with exploratory random testing. We have implemented our solution and applied it to a medium-size application at a major insurance company and to an open-source application. Performance problems were found automatically and confirmed by experienced testers and developers.","PeriodicalId":420187,"journal":{"name":"2012 34th International Conference on Software Engineering (ICSE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 34th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2012.6227197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117
Abstract
A goal of performance testing is to find situations when applications unexpectedly exhibit worsened characteristics for certain combinations of input values. A fundamental question of performance testing is how to select a manageable subset of the input data faster to find performance problems in applications automatically. We offer a novel solution for finding performance problems in applications automatically using black-box software testing. Our solution is an adaptive, feedback-directed learning testing system that learns rules from execution traces of applications and then uses these rules to select test input data automatically for these applications to find more performance problems when compared with exploratory random testing. We have implemented our solution and applied it to a medium-size application at a major insurance company and to an open-source application. Performance problems were found automatically and confirmed by experienced testers and developers.