Prompt Makes mask Language Models Better Adversarial Attackers

He Zhu, Ce Li, Haitian Yang, Yan Wang, Wei-Jung Huang
{"title":"Prompt Makes mask Language Models Better Adversarial Attackers","authors":"He Zhu, Ce Li, Haitian Yang, Yan Wang, Wei-Jung Huang","doi":"10.1109/ICASSP49357.2023.10095125","DOIUrl":null,"url":null,"abstract":"Generating high-quality synonymous perturbations is a core challenge for textual adversarial tasks. However, candidates generated from the masked language model often contain many words that are antonyms or irrelevant to the original words, which limit the perturbation space and affect the attack’s effectiveness. We present ProAttacker1 which uses Prompt to make the mask language models better adversarial Attackers. ProAttacker inverts the prompt paradigm by leveraging the prompt with the class label to guide the language model to generate more semantically-consistent perturbations. We present a systematic evaluation to analyze the attack performance on 6 NLP datasets, covering text classification and inference. Our experiments demonstrate that ProAttacker outperforms state-of-the-art attack strategies in both success rate and perturb rate.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10095125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Generating high-quality synonymous perturbations is a core challenge for textual adversarial tasks. However, candidates generated from the masked language model often contain many words that are antonyms or irrelevant to the original words, which limit the perturbation space and affect the attack’s effectiveness. We present ProAttacker1 which uses Prompt to make the mask language models better adversarial Attackers. ProAttacker inverts the prompt paradigm by leveraging the prompt with the class label to guide the language model to generate more semantically-consistent perturbations. We present a systematic evaluation to analyze the attack performance on 6 NLP datasets, covering text classification and inference. Our experiments demonstrate that ProAttacker outperforms state-of-the-art attack strategies in both success rate and perturb rate.
提示使面具语言模型更好的对抗性攻击者
生成高质量的同义扰动是文本对抗性任务的核心挑战。然而,由掩码语言模型生成的候选词往往包含许多反义词或与原词无关的词,这限制了扰动空间,影响了攻击的有效性。我们提出了ProAttacker1,它使用Prompt使掩码语言模型更好地对抗攻击者。proattack通过利用带有类标签的提示来引导语言模型生成更多语义一致的扰动,从而颠倒了提示范式。我们提出了一个系统的评估来分析6个NLP数据集的攻击性能,包括文本分类和推理。我们的实验表明,proattack在成功率和干扰率方面都优于最先进的攻击策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信