{"title":"Forecasting Commodity Futures Returns: An Economic Value Analysis of Macroeconomic vs. Specific Factors","authors":"Massimo Guidolin, Manuela Pedio","doi":"10.2139/ssrn.3225611","DOIUrl":null,"url":null,"abstract":"We test whether three well-known commodity-specific variables (basis, hedging pressure, and momentum) may improve the predictive power for commodity futures returns of models otherwise based on macroeconomic factors. We compute recursive, out-of-sample forecasts for fifteen monthly commodity futures return series, when estimation is based on a stepwise model selection approach under a probability-weighted regime-switching regression that identifies different volatility regimes. Comparisons with an AR(1) benchmark show that the inclusion of commodity-specific factors does not improve the forecasting power. We perform a back-testing exercise of a mean-variance investment strategy that exploits any predictability of the conditional risk premium of commodities, stocks, and bond returns, also taking into account transaction costs caused by portfolio rebalancing. The risk-adjusted performance of this strategy does not allow us to conclude that any forecasting approach outperforms the others. However, there is evidence that investment strategies based on commodity-specific predictors outperform the remaining strategies in the high-volatility state.","PeriodicalId":170198,"journal":{"name":"ERN: Forecasting Techniques (Topic)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Forecasting Techniques (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3225611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We test whether three well-known commodity-specific variables (basis, hedging pressure, and momentum) may improve the predictive power for commodity futures returns of models otherwise based on macroeconomic factors. We compute recursive, out-of-sample forecasts for fifteen monthly commodity futures return series, when estimation is based on a stepwise model selection approach under a probability-weighted regime-switching regression that identifies different volatility regimes. Comparisons with an AR(1) benchmark show that the inclusion of commodity-specific factors does not improve the forecasting power. We perform a back-testing exercise of a mean-variance investment strategy that exploits any predictability of the conditional risk premium of commodities, stocks, and bond returns, also taking into account transaction costs caused by portfolio rebalancing. The risk-adjusted performance of this strategy does not allow us to conclude that any forecasting approach outperforms the others. However, there is evidence that investment strategies based on commodity-specific predictors outperform the remaining strategies in the high-volatility state.