Nithya Yamasinghe, Yohan Ranasinghe, Yasmika Dissanayake, J. Wijekoon, R. Panchendrarajan
{"title":"iMask: An IoT-based Intelligent Mask to Identify and Track COVID-19 Suspects","authors":"Nithya Yamasinghe, Yohan Ranasinghe, Yasmika Dissanayake, J. Wijekoon, R. Panchendrarajan","doi":"10.1109/SmartIoT55134.2022.00011","DOIUrl":null,"url":null,"abstract":"COVID-19 has become a global health concern, and wearing masks is a key measure to curb COVID-19 from rapidly spreading. While COVID-19 patients can be accurately determined using Rapid Antigen and PCR tests, these tests are costly, time-consuming, invasive, and uncomfortable. Further, they should be performed in a specialized environment despite showing the COVID-19 symptoms such as fever, cough, rapid heart rate, shortness of breath, and low blood oxygen saturation level. To this end, this study aims to automatically identify, and track the COVID-19 suspects in real-time by embedding smart sensors to face masks. The mask was developed to gather the data related to five major symptoms of COVID-19: body temperature, cough, heart rate, breathing pattern, and blood oxygen level. Data collected using smart sensors were used to identify and track COVID-19 suspects using Deep Neural Networks, the Internet of Things (IoT), and Artificial Intelligence (AI). Yielded results showed the proposed mask can identify COVID-19 suspects 92% accurately.","PeriodicalId":422269,"journal":{"name":"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIoT55134.2022.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
COVID-19 has become a global health concern, and wearing masks is a key measure to curb COVID-19 from rapidly spreading. While COVID-19 patients can be accurately determined using Rapid Antigen and PCR tests, these tests are costly, time-consuming, invasive, and uncomfortable. Further, they should be performed in a specialized environment despite showing the COVID-19 symptoms such as fever, cough, rapid heart rate, shortness of breath, and low blood oxygen saturation level. To this end, this study aims to automatically identify, and track the COVID-19 suspects in real-time by embedding smart sensors to face masks. The mask was developed to gather the data related to five major symptoms of COVID-19: body temperature, cough, heart rate, breathing pattern, and blood oxygen level. Data collected using smart sensors were used to identify and track COVID-19 suspects using Deep Neural Networks, the Internet of Things (IoT), and Artificial Intelligence (AI). Yielded results showed the proposed mask can identify COVID-19 suspects 92% accurately.