Multiobjective Coyote Algorithm Applied to Electromagnetic Optimization

Juliano Pierezan, L. dos Santos Coelho, V. Mariani, L. Lebensztajn
{"title":"Multiobjective Coyote Algorithm Applied to Electromagnetic Optimization","authors":"Juliano Pierezan, L. dos Santos Coelho, V. Mariani, L. Lebensztajn","doi":"10.1109/COMPUMAG45669.2019.9032768","DOIUrl":null,"url":null,"abstract":"The Coyote Optimization Algorithm (COA) is a population-based nature-inspired metaheuristic for global optimization that considers the social relations of the coyote proposed originally to single-objective optimization. In this paper, the numerical results are reported to validate a novel proposed multiobjective COA (MOCOA) to solve the Testing Electromagnetic Analysis Method (TEAM) workshop benchmark problem 25. Simulation results demonstrate the validity of the proposed MOCOA to find nondominated solutions that represent good trade-offs among the objectives in the evaluated problem.","PeriodicalId":317315,"journal":{"name":"2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPUMAG45669.2019.9032768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The Coyote Optimization Algorithm (COA) is a population-based nature-inspired metaheuristic for global optimization that considers the social relations of the coyote proposed originally to single-objective optimization. In this paper, the numerical results are reported to validate a novel proposed multiobjective COA (MOCOA) to solve the Testing Electromagnetic Analysis Method (TEAM) workshop benchmark problem 25. Simulation results demonstrate the validity of the proposed MOCOA to find nondominated solutions that represent good trade-offs among the objectives in the evaluated problem.
多目标Coyote算法在电磁优化中的应用
COA算法是一种基于种群的自然启发的全局优化元启发式算法,它考虑了土狼的社会关系,最初提出了单目标优化。本文的数值结果验证了一种新的多目标COA (MOCOA)方法解决测试电磁分析法(TEAM)车间基准问题25的有效性。仿真结果证明了所提出的MOCOA在寻找非支配解方面的有效性,这些非支配解代表了评估问题中目标之间的良好权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信