{"title":"Consistent inference of probabilities in layered networks: predictions and generalizations","authors":"Naftali Tishby, E. Levin, S. Solla","doi":"10.1109/IJCNN.1989.118274","DOIUrl":null,"url":null,"abstract":"The problem of learning a general input-output relation using a layered neural network is discussed in a statistical framework. By imposing the consistency condition that the error minimization be equivalent to a likelihood maximization for training the network, the authors arrive at a Gibbs distribution on a canonical ensemble of networks with the same architecture. This statistical description enables them to evaluate the probability of a correct prediction of an independent example, after training the network on a given training set. The prediction probability is highly correlated with the generalization ability of the network, as measured outside the training set. This suggests a general and practical criterion for training layered networks by minimizing prediction errors. The authors demonstrate the utility of this criterion for selecting the optimal architecture in the continuity problem. As a theoretical application of the statistical formalism, they discuss the question of learning curves and estimate the sufficient training size needed for correct generalization, in a simple example.<<ETX>>","PeriodicalId":199877,"journal":{"name":"International 1989 Joint Conference on Neural Networks","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"185","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International 1989 Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1989.118274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 185
Abstract
The problem of learning a general input-output relation using a layered neural network is discussed in a statistical framework. By imposing the consistency condition that the error minimization be equivalent to a likelihood maximization for training the network, the authors arrive at a Gibbs distribution on a canonical ensemble of networks with the same architecture. This statistical description enables them to evaluate the probability of a correct prediction of an independent example, after training the network on a given training set. The prediction probability is highly correlated with the generalization ability of the network, as measured outside the training set. This suggests a general and practical criterion for training layered networks by minimizing prediction errors. The authors demonstrate the utility of this criterion for selecting the optimal architecture in the continuity problem. As a theoretical application of the statistical formalism, they discuss the question of learning curves and estimate the sufficient training size needed for correct generalization, in a simple example.<>