Adaptive information extraction of disaster information from Twitter

Ralph Vincent J. Regalado, Jenina L. Chua, J. L. Co, H. C. Cheng, Angelo Bruce L. Magpantay, Kristine Kalaw
{"title":"Adaptive information extraction of disaster information from Twitter","authors":"Ralph Vincent J. Regalado, Jenina L. Chua, J. L. Co, H. C. Cheng, Angelo Bruce L. Magpantay, Kristine Kalaw","doi":"10.1109/ICACSIS.2014.7065859","DOIUrl":null,"url":null,"abstract":"With the popularity of the Internet and social media platforms, information that is potentially useful in disaster response becomes available online in the hours and days immediately following a disaster. The use of information extraction in retrieving relevant disaster information from all these crowdsourced data would provide more information coming from both official reports, and the affected people themselves which in turn facilitate better decision making environments for disaster managers. This paper describes a system which performs an adaptive information retrieval of disaster related information coming from Twitter. Result shows 94.33% accuracy when extracting disaster and location information in the typhoon corpus while 90.79% accuracy for the fire corpus.","PeriodicalId":443250,"journal":{"name":"2014 International Conference on Advanced Computer Science and Information System","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advanced Computer Science and Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2014.7065859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

With the popularity of the Internet and social media platforms, information that is potentially useful in disaster response becomes available online in the hours and days immediately following a disaster. The use of information extraction in retrieving relevant disaster information from all these crowdsourced data would provide more information coming from both official reports, and the affected people themselves which in turn facilitate better decision making environments for disaster managers. This paper describes a system which performs an adaptive information retrieval of disaster related information coming from Twitter. Result shows 94.33% accuracy when extracting disaster and location information in the typhoon corpus while 90.79% accuracy for the fire corpus.
自适应信息提取灾难信息从Twitter
随着互联网和社交媒体平台的普及,在灾难发生后的几小时或几天内,就可以在网上获得可能对救灾有用的信息。在从所有这些众包数据中检索相关灾害信息时,使用信息提取方法将提供来自官方报告和受灾人民本身的更多信息,从而为灾害管理人员提供更好的决策环境。本文介绍了一种对来自Twitter的灾害相关信息进行自适应信息检索的系统。结果表明,台风语料库中灾害和位置信息的提取准确率为94.33%,火灾语料库中灾害和位置信息的提取准确率为90.79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信