{"title":"Controlled Algebra for Simplicial Rings and Algebraic K-theory","authors":"Mark Ullmann","doi":"10.1017/9781316771327.011","DOIUrl":null,"url":null,"abstract":"We develop a version of controlled algebra for simplicial rings. This generalizes the methods which lead to successful proofs of the algebraic K- theory isomorphism conjecture (Farrell-Jones Conjecture) for a large class of groups. This is the first step to prove the algebraic K-theory isomorphism conjecture for simplicial rings. We construct a category of controlled simplicial modules, show that it has the structure of a Waldhausen category and discuss its algebraic K-theory. \nWe lay emphasis on detailed proofs. Highlights include the discussion of a simplicial cylinder functor, the gluing lemma, a simplicial mapping telescope to split coherent homotopy idempotents, and a direct proof that a weak equivalence of simplicial rings induces an equivalence on their algebraic K-theory. Because we need a certain cofinality theorem for algebraic K-theory, we provide a proof and show that a certain assumption, sometimes omitted in the literature, is necessary. Last, we remark how our setup relates to ring spectra.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781316771327.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We develop a version of controlled algebra for simplicial rings. This generalizes the methods which lead to successful proofs of the algebraic K- theory isomorphism conjecture (Farrell-Jones Conjecture) for a large class of groups. This is the first step to prove the algebraic K-theory isomorphism conjecture for simplicial rings. We construct a category of controlled simplicial modules, show that it has the structure of a Waldhausen category and discuss its algebraic K-theory.
We lay emphasis on detailed proofs. Highlights include the discussion of a simplicial cylinder functor, the gluing lemma, a simplicial mapping telescope to split coherent homotopy idempotents, and a direct proof that a weak equivalence of simplicial rings induces an equivalence on their algebraic K-theory. Because we need a certain cofinality theorem for algebraic K-theory, we provide a proof and show that a certain assumption, sometimes omitted in the literature, is necessary. Last, we remark how our setup relates to ring spectra.