Prosody Study with Context-Dependent Acoustic Models

Yue-Ning Hu, Min Chu
{"title":"Prosody Study with Context-Dependent Acoustic Models","authors":"Yue-Ning Hu, Min Chu","doi":"10.1109/CHINSL.2008.ECP.26","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to study prosody with context-dependent acoustic models. We find that we can achieve better resolution on a specific aspect by training CDM with certain focus. For the tone recognition task, CDM with focus on tones should be used and it achieves 15.2% relative error reduction, when comparing with the traditional tri-phone models. For detecting prosody boundaries, CDM with focus on position should be used and the accuracy of prosodic word is 92.2%. CDMs are also used to visualize the f0 patterns of sentences with give contextual information. Such patterns are helpful to understand the interaction among contextual factors. Overall, CDMs are useful data source for various prosody studies.","PeriodicalId":291958,"journal":{"name":"2008 6th International Symposium on Chinese Spoken Language Processing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 6th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHINSL.2008.ECP.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose to study prosody with context-dependent acoustic models. We find that we can achieve better resolution on a specific aspect by training CDM with certain focus. For the tone recognition task, CDM with focus on tones should be used and it achieves 15.2% relative error reduction, when comparing with the traditional tri-phone models. For detecting prosody boundaries, CDM with focus on position should be used and the accuracy of prosodic word is 92.2%. CDMs are also used to visualize the f0 patterns of sentences with give contextual information. Such patterns are helpful to understand the interaction among contextual factors. Overall, CDMs are useful data source for various prosody studies.
基于上下文声学模型的韵律研究
在本文中,我们提出使用上下文相关声学模型来研究韵律。我们发现,通过对CDM进行特定重点的培训,可以在特定方面获得更好的解决方案。对于语音识别任务,需要使用聚焦于语音的CDM,与传统的三机模型相比,它的相对误差降低了15.2%。对于韵律边界的检测,应使用以位置为重点的CDM,韵律词的准确率为92.2%。cdm还用于可视化句子的60种模式,并提供上下文信息。这种模式有助于理解上下文因素之间的相互作用。总的来说,cdm是各种韵律研究的有用数据源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信