{"title":"Accessing the Presentation of Causal Graphs and an Application of Gestalt Principles with Eye Tracking","authors":"Lisa Grabinger, Florian Hauser, J. Mottok","doi":"10.1109/saner53432.2022.00153","DOIUrl":null,"url":null,"abstract":"The discipline of causal inference uses so-called causal graphs to model cause and effect relations of random variables. As those graphs only encode a relation structure there is no hard rule concerning their alignment. The present paper presents a study with the aim of working out the optimal alignment of causal graphs with respect to comprehensibility and interestingness. In addition, the study examines whether the central gestalt principles of psychology apply for causal graphs. Data from 29 participants is acquired by triangulating eye tracking with a questionnaire. The results of the study suggest that causal graphs should be aligned downwards. Moreover, the gestalt principles proximity, similarity and closure are shown to hold true for causal graphs.","PeriodicalId":437520,"journal":{"name":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/saner53432.2022.00153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The discipline of causal inference uses so-called causal graphs to model cause and effect relations of random variables. As those graphs only encode a relation structure there is no hard rule concerning their alignment. The present paper presents a study with the aim of working out the optimal alignment of causal graphs with respect to comprehensibility and interestingness. In addition, the study examines whether the central gestalt principles of psychology apply for causal graphs. Data from 29 participants is acquired by triangulating eye tracking with a questionnaire. The results of the study suggest that causal graphs should be aligned downwards. Moreover, the gestalt principles proximity, similarity and closure are shown to hold true for causal graphs.