{"title":"Connecting the dots to infer followers' topical interest on Twitter","authors":"Aastha Nigam, Salvador Aguiñaga, N. Chawla","doi":"10.1109/BESC.2016.7804498","DOIUrl":null,"url":null,"abstract":"Twitter provides a platform for information sharing and diffusion, and has quickly emerged as a mechanism for organizations to engage with their consumers. A driving factor for engagement is providing relevant and timely content to users. We posit that the engagement via tweets offers a good potential to discover user interests and leverage that information to target specific content of interest. To that end, we have developed a framework that analyzes tweets to identify the interests of current followers and leverages topic models to deliver a personalized topic profile for each user. We validated our framework by partnering up with a local media company and analyzing the content gap between them and their followers. We also developed a mobile application that incorporates the proposed framework.","PeriodicalId":225942,"journal":{"name":"2016 International Conference on Behavioral, Economic and Socio-cultural Computing (BESC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Behavioral, Economic and Socio-cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC.2016.7804498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Twitter provides a platform for information sharing and diffusion, and has quickly emerged as a mechanism for organizations to engage with their consumers. A driving factor for engagement is providing relevant and timely content to users. We posit that the engagement via tweets offers a good potential to discover user interests and leverage that information to target specific content of interest. To that end, we have developed a framework that analyzes tweets to identify the interests of current followers and leverages topic models to deliver a personalized topic profile for each user. We validated our framework by partnering up with a local media company and analyzing the content gap between them and their followers. We also developed a mobile application that incorporates the proposed framework.