Normalized Neural Network for Belief Propagation LDPC Decoding

Yiduo Tang, Lin Zhou, Shuying Zhang, Chen Chen, Lin Wang
{"title":"Normalized Neural Network for Belief Propagation LDPC Decoding","authors":"Yiduo Tang, Lin Zhou, Shuying Zhang, Chen Chen, Lin Wang","doi":"10.1109/ICNSC52481.2021.9702213","DOIUrl":null,"url":null,"abstract":"BP decoding algorithm is one of the commonly used decoding algorithms for LDPC codes. To adapt LDPC codes to different 5G scenarios and further improve the decoding performance of short LDPC codes, a scheme combining model-driven deep learning with a traditional BP decoding algorithm is proposed. With the advantages of model-driven, this solution expands the decoding iteration process between the check node and the variable node into a neural network and proposes a parameter normalization optimization solution to solve the problem of the program with many training parameters, the edge weights of the optimized Tanner graph are re-assigned and bound. Simulation results show that the proposed scheme can improve the decoding performance of LDPC codes with short lengths.","PeriodicalId":129062,"journal":{"name":"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC52481.2021.9702213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

BP decoding algorithm is one of the commonly used decoding algorithms for LDPC codes. To adapt LDPC codes to different 5G scenarios and further improve the decoding performance of short LDPC codes, a scheme combining model-driven deep learning with a traditional BP decoding algorithm is proposed. With the advantages of model-driven, this solution expands the decoding iteration process between the check node and the variable node into a neural network and proposes a parameter normalization optimization solution to solve the problem of the program with many training parameters, the edge weights of the optimized Tanner graph are re-assigned and bound. Simulation results show that the proposed scheme can improve the decoding performance of LDPC codes with short lengths.
信念传播的归一化神经网络LDPC译码
BP译码算法是LDPC码常用的译码算法之一。为了使LDPC码适应不同的5G场景,进一步提高短LDPC码的译码性能,提出了一种将模型驱动深度学习与传统BP译码算法相结合的方案。该方案利用模型驱动的优点,将检查节点和变量节点之间的解码迭代过程扩展为神经网络,并提出了一种参数归一化优化方案,用于解决具有多训练参数的程序问题,对优化后的Tanner图的边权进行重新分配和定界。仿真结果表明,该方案可以提高短长度LDPC码的译码性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信