An Epistemic Interpretation of Tensor Disjunction

Hao Wang, Yanjing Wang, Yunsong Wang
{"title":"An Epistemic Interpretation of Tensor Disjunction","authors":"Hao Wang, Yanjing Wang, Yunsong Wang","doi":"10.48550/arXiv.2203.13970","DOIUrl":null,"url":null,"abstract":"This paper aims to give an epistemic interpretation to the tensor disjunction in dependence logic, through a rather surprising connection to the so-called weak disjunction in Medvedev's early work on intermediate logic under the Brouwer-Heyting-Kolmogorov (BHK)-interpretation. We expose this connection in the setting of inquisitive logic with tensor disjunction discussed by Ciardelli and Barbero (2019}, but from an epistemic perspective. More specifically, we translate the propositional formulae of inquisitive logic with tensor into modal formulae in a powerful epistemic language of\"knowing how\"following the proposal by Wang (2021). We give a complete axiomatization of the logic of our full language based on Fine's axiomatization of S5 modal logic with propositional quantifiers. Finally, we generalize the tensor operator with parameters $k$ and $n$, which intuitively captures the epistemic situation that one knows $n$ potential answers to $n$ questions and is sure $k$ answers of them must be correct. The original tensor disjunction is the special case when $k=1$ and $n=2$. We show that the generalized tensor operators do not increase the expressive power of our logic, the inquisitive logic, and propositional dependence logic, though most of these generalized tensors are not uniformly definable in these logics, except in our dynamic epistemic logic of knowing how.","PeriodicalId":129696,"journal":{"name":"Advances in Modal Logic","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Modal Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.13970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper aims to give an epistemic interpretation to the tensor disjunction in dependence logic, through a rather surprising connection to the so-called weak disjunction in Medvedev's early work on intermediate logic under the Brouwer-Heyting-Kolmogorov (BHK)-interpretation. We expose this connection in the setting of inquisitive logic with tensor disjunction discussed by Ciardelli and Barbero (2019}, but from an epistemic perspective. More specifically, we translate the propositional formulae of inquisitive logic with tensor into modal formulae in a powerful epistemic language of"knowing how"following the proposal by Wang (2021). We give a complete axiomatization of the logic of our full language based on Fine's axiomatization of S5 modal logic with propositional quantifiers. Finally, we generalize the tensor operator with parameters $k$ and $n$, which intuitively captures the epistemic situation that one knows $n$ potential answers to $n$ questions and is sure $k$ answers of them must be correct. The original tensor disjunction is the special case when $k=1$ and $n=2$. We show that the generalized tensor operators do not increase the expressive power of our logic, the inquisitive logic, and propositional dependence logic, though most of these generalized tensors are not uniformly definable in these logics, except in our dynamic epistemic logic of knowing how.
张量析取的认识论解释
本文旨在通过与梅德韦杰夫早期在brouwer - heyding - kolmogorov (BHK)解释下关于中间逻辑的所谓弱析取的惊人联系,对依赖逻辑中的张量析取给出一种认识论解释。我们通过Ciardelli和Barbero(2019)讨论的张量析取,在探究逻辑的背景下揭示了这种联系,但从认识论的角度来看。更具体地说,我们根据Wang(2021)的建议,将带有张量的探究式逻辑的命题公式转化为一种强大的“知道如何”的认知语言中的模态公式。我们在Fine的命题量词的S5模态逻辑公理化的基础上给出了我们完整语言逻辑的完全公理化。最后,我们推广了具有参数$k$和$n$的张量算子,它直观地捕捉到一个人知道$n$个问题的$n$个潜在答案,并且确定其中$k$个答案必须是正确的认知情况。原始张量脱节是当k=1和n=2时的特殊情况。我们证明了广义张量算子并没有增加我们的逻辑、探究逻辑和命题依赖逻辑的表达能力,尽管大多数这些广义张量在这些逻辑中不是统一可定义的,除了我们知道如何定义的动态认知逻辑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信