The Einstein field equation

A. Steane
{"title":"The Einstein field equation","authors":"A. Steane","doi":"10.1093/oso/9780192895646.003.0016","DOIUrl":null,"url":null,"abstract":"Various aspects of the Einstein field equation are presented. First the field equation is obtained by arguing that it is the simplest equation that respects the fundamental geometric insight into gravity. Then we consider whether the equation is stable, and introduce the weak energy and dominant energy conditions. The connection between inertial motion and the distant universe (Mach’s principle) is discussed. The equation of motion of matter is obtained from the field equation, and a comparison made with electromagnetic field theory. The energy and momentum of gravitational fields in stationary conditions is discussed, and the Komar energy obtained.","PeriodicalId":365636,"journal":{"name":"Relativity Made Relatively Easy Volume 2","volume":"20 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Relativity Made Relatively Easy Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192895646.003.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Various aspects of the Einstein field equation are presented. First the field equation is obtained by arguing that it is the simplest equation that respects the fundamental geometric insight into gravity. Then we consider whether the equation is stable, and introduce the weak energy and dominant energy conditions. The connection between inertial motion and the distant universe (Mach’s principle) is discussed. The equation of motion of matter is obtained from the field equation, and a comparison made with electromagnetic field theory. The energy and momentum of gravitational fields in stationary conditions is discussed, and the Komar energy obtained.
爱因斯坦场方程
介绍了爱因斯坦场方程的各个方面。首先,场方程是通过论证得出的,它是最简单的方程,它尊重对引力的基本几何洞察力。然后考虑方程是否稳定,并引入弱能和优势能条件。讨论了惯性运动与遥远宇宙的联系(马赫原理)。由场方程得到了物质的运动方程,并与电磁场理论进行了比较。讨论了静止条件下引力场的能量和动量,得到了引力场的科玛能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信