{"title":"FANTASI: A novel devices-to-circuits simulation framework for fast estimation of write error rates in spintronics","authors":"Venkata Pavan Kumar Miriyala","doi":"10.1109/SISPAD.2018.8551656","DOIUrl":null,"url":null,"abstract":"Though physical mechanisms such as spin-transfer torque (STT), spin-orbit torque (SOT), and voltage-controlled magnetic anisotropy (VCMA) has potential to enable energyefficient and ultra-fast switching of spintronic devices, the switching dynamics are stochastic due to thermal fluctuations. Thus, there is a need in spintronics to understand the interactions between circuit design and the error rate in the switching mechanism, called as write error rate. In this paper, we propose a novel devices-to-circuits simulation framework (FANTASI) for fast estimation of the write error rates (WER) in different spintronic devices and circuits. Here, we show that, FANTASI enables efficient spintronic device-circuit co-design, with results in good agreement with the experimental measurements.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2018.8551656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Though physical mechanisms such as spin-transfer torque (STT), spin-orbit torque (SOT), and voltage-controlled magnetic anisotropy (VCMA) has potential to enable energyefficient and ultra-fast switching of spintronic devices, the switching dynamics are stochastic due to thermal fluctuations. Thus, there is a need in spintronics to understand the interactions between circuit design and the error rate in the switching mechanism, called as write error rate. In this paper, we propose a novel devices-to-circuits simulation framework (FANTASI) for fast estimation of the write error rates (WER) in different spintronic devices and circuits. Here, we show that, FANTASI enables efficient spintronic device-circuit co-design, with results in good agreement with the experimental measurements.